

Agile Project
Management

Agile Project
Management

3rd Edition

by Mark C. Layton, Steven J Ostermiller,
and Dean J. Kynaston

Agile Project Management For Dummies®, 3rd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. SAFe and Scaled Agile Framework are registered trademarks of Scaled Agile, Inc. Certified Scrum
Developer, Certified Scrum Product Owner, Certified Scrum Professional, Certified Scrum Trainer, and Certified
ScrumMaster are registered trademarks of Scrum Alliance. PMI Agile Certified Practitioner and PMI-ACP are
registered trademarks of Project Management Institute, Inc. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020942690

ISBN 978-1-119-67699-7 (pbk); ISBN 978-1-119-67706-2 (ebk); ISBN 978-1-119-67705-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance
Introduction . 1

Part 1: Understanding Agility . 5
CHAPTER 1: Modernizing Project Management . 7
CHAPTER 2: Applying the Agile Manifesto and Principles . 21
CHAPTER 3:	 Why	Being	Agile	Works Better . 49
CHAPTER 4: Agility Is about Being Customer Focused . 69

Part 2: Being Agile . 89
CHAPTER 5: Agile Approaches . 91
CHAPTER 6:	 Agile	Environments	in Action . 109
CHAPTER 7: Agile Behaviors in Action . 123
CHAPTER 8: The Permanent Team . 149

Part 3: Agile Planning and Execution . 159
CHAPTER 9:	 Defining	the	Product	Vision	and	Product	Roadmap 161
CHAPTER 10:	Planning	Releases	and Sprints . 183
CHAPTER 11: Working throughout the Day . 215
CHAPTER 12:	Showcasing	Work,	Inspecting,	and	Adapting . 239

Part 4: Agility Management . 251
CHAPTER 13:	Managing	a	Portfolio:	Pursuing	Value	over	Requirements 253
CHAPTER 14:	Managing	Scope	and	Procurement . 269
CHAPTER 15: Managing Time and Cost . 287
CHAPTER 16: Managing Team Dynamics and Communication 307
CHAPTER 17:	Managing	Quality	and	Risk . 331

Part 5: Ensuring Success . 355
CHAPTER 18: Building a Foundation . 357
CHAPTER 19:	De-Scaling	across	Teams . 373
CHAPTER 20: Being a Change Agent . 395

Part 6: The Part of Tens . 421
CHAPTER 21:	Ten	Key	Benefits	of	Agile	Product	Development 423
CHAPTER 22:	Ten	Key	Factors	for	Agile	Product	Development	Success 431
CHAPTER 23:	Ten	Signs	That	You’re	Not	Agile . 437
CHAPTER 24:	Ten	Valuable	Resources	for	Agile	Professionals 449

Index . 455

Table of Contents vii

Table of Contents
INTRODUCTION . 1

About This Book .1
Foolish Assumptions .1
Icons Used in This Book .2
Beyond the Book .2
Where to Go from Here .3

PART 1: UNDERSTANDING AGILITY . 5

CHAPTER 1: Modernizing Project Management . 7
Project	Management	Needed	a	Makeover . 8

The origins of modern project management 8
The	problem	with	the	status	quo . 9

Introducing Agile Project Management .11
How	agile	projects	work .14

Agile Project Management Is Becoming Agile
Product Management .16

Differences	between	managing	a	project	versus	
developing a product .16
Why	agile	product	development	works	better 18

CHAPTER 2: Applying the Agile Manifesto and Principles 21
Understanding the Agile Manifesto .21
Outlining	the	Four	Values	of	the	Agile	Manifesto 24

Value	1:	Individuals	and	interactions	over	processes	
and tools .25
Value	2:	Working	software	over	comprehensive	
documentation .26
Value	3:	Customer	collaboration	over	contract	negotiation 28
Value	4:	Responding	to	change	over	following	a	plan 29

Defining	the	12	Agile	Principles .30
Agile principles of customer satisfaction .32
Agile	principles	of	quality .34
Agile	principles	of	teamwork .36
Agile principles of product development .38

Adding the Platinum Principles .42
Resisting	formality .42
Thinking and acting as a team .43
Visualizing	rather	than	writing .44

Changes	as	a	Result	of	Agile	Values .45
The Agile Litmus Test .47

viii Agile Project Management For Dummies

CHAPTER 3:	 Why	Being	Agile	Works Better . 49
Evaluating	Agile	Benefits .49
How	Agile	Approaches	Beat	Historical Approaches 54

Greater	flexibility	and	stability .55
Reduced	nonproductive	tasks .57
Higher	quality,	delivered	faster .60
Improved team performance .61
Tighter control .62
Faster and less costly failure .63

Why People Like Being Agile .64
Executives .64
Product development and customers .65
Management .66
Development teams .67

CHAPTER 4: Agility Is about Being Customer Focused 69
Knowing	Your	Customers .69

Common	methods	for	identifying	your customer 71
Figuring	Out	the	Problem	Your	Customer	Needs	to	Solve 79

Using	the	scientific	method .79
Failing early is a form of success .81
Defining	customer-focused	business	goals .82
Story	mapping .83
Liberating	structures —	simple	rules	to	unleash	a	culture	
of innovation .83

Understanding	Root	Cause	Analysis .84
Pareto rule .85
Five	why’s .86
Ishikawa	(fishbone) .87

PART 2: BEING AGILE . 89

CHAPTER 5: Agile Approaches . 91
Diving under the Umbrella of Agile Approaches 91
Reviewing	the	Big	Three:	Lean,	Scrum,	and	
Extreme	Programming .95

An	overview	of	lean .95
An	overview	of	scrum .100
An	overview	of	extreme	programming .105

Putting It All Together .107

CHAPTER 6:	 Agile	Environments	in Action . 109
Creating the Physical Environment .110

Collocating the team .110
Setting	up	a	dedicated	area .112
Removing	distractions .113

Table of Contents ix

Low-Tech	Communicating .114
High-Tech Communicating .116
Choosing Tools . .118

The purpose of the tool .119
Tools that encourage the success of forced team dislocation . . .119
Organizational and compatibility constraints 121

CHAPTER 7: Agile Behaviors in Action . 123
Establishing	Agile	Roles .123

Product	owner .124
Development team member .128
Scrum	master .130
Stakeholders . .132
Agile mentor .134

Establishing	New	Values .134
Commitment .135
Focus .136
Openness .137
Respect .138
Courage .138

Changing Team Philosophy .139
Dedicated team .140
Cross-functionality . .141
Self-organization .143
Self-management .144
Size-limited	teams .146
Ownership .147

CHAPTER 8: The Permanent Team . 149
Enabling Long-Lived Product Development Teams 149

Leveraging	long-term	knowledge	and	capability 150
Navigating	Tuckman’s	phases	to	performance 151
Focusing on fundamentals .153
Creating	a	working	agreement .154

Enabling	Autonomy,	Mastery,	and	Purpose .155
Autonomy .155
Mastery .155
Purpose .156
Highly aligned and highly autonomous teams 157

Building	Team	Knowledge	and	Capability .157

x Agile Project Management For Dummies

PART 3: AGILE PLANNING AND EXECUTION 159

CHAPTER 9:	 Defining	the	Product	Vision	and	Product	
Roadmap . 161
Agile Planning .162

Progressive elaboration .164
Inspect and adapt .165

Defining	the	Product	Vision .165
Step	1:	Developing	the	product	objective .167
Step	2:	Creating	a	draft	vision	statement .167
Step	3:	Validating	and	revising	the	vision	statement 169
Step	4:	Finalizing	the	vision	statement .170

Creating	a	Product	Roadmap .171
Step	1:	Identifying	product	stakeholders .172
Step	2:	Establishing	product	requirements 173
Step	3:	Arranging	product	features .175
Step	4:	Estimating	efforts	and	ordering	requirements 176
Step	5:	Determining	high-level	time	frames 180
Saving	your	work .180

Completing the Product Backlog .180

CHAPTER 10:	Planning	Releases	and Sprints . 183
Refining	Requirements	and	Estimates .183

What is a user story? .184
Steps	to	create	a	user	story .186
Breaking	down	requirements .190
Estimation poker .192
Affinity	estimating .195

Release	Planning .197
Preparing	for	Release .200

Preparing the product for deployment .201
Prepare for operational support .201
Preparing the organization .203
Preparing the marketplace .204

Sprint	Planning . .205
The sprint backlog .206
The sprint planning meeting .207

CHAPTER 11: Working throughout the Day . 215
Planning	Your	Day:	The	Daily	Scrum .215
Tracking Progress .219

The sprint backlog .219
The task board .222

Table of Contents xi

Agile	Roles	in	the	Sprint .224
Keys	for	daily	product	owner	success .225
Keys for daily development team member success 226
Keys for daily scrum master success .227
Keys for daily stakeholder success .228
Keys for daily agile mentor success .228

Creating	Shippable	Functionality .229
Elaborating .230
Developing .230
Verifying .231
Identifying roadblocks .234

Information	Radiators . .235
The End of the Day .236

CHAPTER 12: Showcasing Work, Inspecting, and Adapting 239
The	Sprint	Review .239

Preparing to demonstrate .240
The	sprint	review	meeting .241
Collecting	feedback	in	the	sprint	review	meeting 244

The	Sprint	Retrospective .245
Planning for retrospectives .247
The retrospective meeting .248
Inspecting and adapting .250

PART 4: AGILITY MANAGEMENT . 251

CHAPTER 13:	Managing	a	Portfolio:	Pursuing	Value	over	
Requirements . 253
Understanding	the	Differences	in	Agile	Portfolio	Management 254

Should	we	invest? .255
Factors for forecasting product investment returns 256

Managing Agile Product Portfolios .261
Should	we	continue	investing? .266
Inspecting	and	adapting	to	the	next	opportunity 267

CHAPTER 14: Managing Scope and Procurement 269
What’s	Different	about	Agile	Scope	Management? 270
Managing	Agile	Scope .272

Understanding scope throughout product development 273
Introducing scope changes .275
Managing scope changes .275
Using agile artifacts for scope management 277

What’s	Different	about	Agile	Procurement? .278
Managing Agile Procurement .280

xii Agile Project Management For Dummies

Determining need and selecting a vendor .280
Understanding cost approaches and contracts for services 282
Working	with	a	vendor .285
Closing a contract .286

CHAPTER 15: Managing Time and Cost . 287
What’s	Different	about	Agile	Time	Management? 287
Managing	Agile	Schedules .289

Introducing velocity .289
Monitoring and adjusting velocity .291
Managing scope changes from a time perspective 297
Managing time by using multiple teams .298
Using agile artifacts for time management 298

What’s	Different	about	Agile	Cost	Management? 299
Managing Agile Budgets .300

Creating an initial budget .301
Creating a self-funding product . .302
Using velocity to determine long-range costs 303
Using agile artifacts for cost management 306

CHAPTER 16: Managing Team Dynamics and
Communication . 307
What’s	Different	about	Agile	Team	Dynamics? 307
Managing Team Dynamics .309

Becoming self-managing and self-organizing 310
Supporting	the	team:	The	servant-leader .314
Working	with	a	dedicated	team .316
Working	with	a	cross-functional	team .317
Reinforcing	openness .319
Limiting development team size .320
Managing	product	development	with	dislocated	teams 321

What’s	Different	about	Agile	Communication? 324
Managing Agile Communication .325

Understanding agile communication methods 325
Status	and	progress	reporting .328

CHAPTER 17: Managing Quality and Risk . 331
What’s	Different	about	Agile	Quality? .331
Managing Agile Quality .334

Quality and the sprint .335
Proactive	quality .335
Quality through regular inspecting and adapting 341
Automated testing .342

Table of Contents xiii

What’s Different about Agile Risk Management? 345
Managing Agile Risk .348

Reducing risk inherently .348
Identifying, prioritizing, and responding to risks early353

PART 5: ENSURING SUCCESS . 355

CHAPTER 18: Building a Foundation . 357
Organizational and Individual Commitment .357

Organizational commitment .358
Individual commitment .359
Getting commitment .360
Can you make the transition? .361
Timing the transition .362

Choosing the Right Pilot Team Members .363
The agile champion .363
The agile transition team .364
The product owner .365
The development team .366
The scrum master .366
The stakeholders .367
The agile mentor .367

Creating an Environment That Enables Agility 368
Support Agility Initially and Over Time .371

CHAPTER 19: De-Scaling across Teams . 373
Multi-Team Agile Development .374
Making Work Digestible through Vertical Slicing 376

Scrum of scrums .376
Multi-Team Coordination with LeSS .380

LeSS, the smaller framework .380
LeSS Huge framework .381
Sprint review bazaar .382
Observers at the daily scrum .383
Component communities and mentors .383
Multi-team meetings .383
Travelers .384

Aligning through Roles with Scrum@Scale .384
The scrum master cycle .385
The product owner cycle .387
Synchronizing in one hour a day .388

Joint Program Planning with SAFe .388
Joint program increment planning .391
Clarity for managers .392

Disciplined Agile Toolkit .392

xiv Agile Project Management For Dummies

CHAPTER 20: Being a Change Agent . 395
Becoming Agile Requires Change .395
Why Change Doesn’t Happen on Its Own .396
Strategic Approaches to Implementing and Managing Change 397

Lewin .398
ADKAR’s five steps to change .399
Kotter’s eight steps for leading change .400

Platinum Edge’s Change Roadmap .401
Step 1: Conduct an agile audit to define an implementation
strategy with success metrics .403
Step 2: Build awareness and excitement .404
Step 3: Form a transformation team and identify a pilot 405
Step 4: Build an environment for success .407
Step 5: Train sufficiently and recruit as needed 408
Step 6: Kick off the pilot with active coaching 408
Step 7: Execute the Roadmap to Value .410
Step 8: Gather feedback and improve .410
Step 9: Mature and solidify improvements 411
Step 10: Progressively expand within the organization 412

Leading by Example .412
The role of a servant-leader in an agile organization 413
Keys for successful servant leadership .413

Avoiding Transformation Pitfalls .414
Avoiding agile leadership pitfalls .417

Signs Your Changes Are Slipping .418

PART 6: THE PART OF TENS . 421

CHAPTER 21:	Ten	Key	Benefits	of	Agile	Product	
Development . 423
Higher Customer Satisfaction .423
Better Product Quality .424
Reduced Risk .425
Increased Collaboration and Ownership .426
More Relevant Metrics .426
Improved Performance Visibility .427
Increased Investment Control .428
Improved Predictability .429
Optimized Team Structures .429
Higher Team Morale .430

Table of Contents xv

CHAPTER 22: Ten Key Factors for Agile Product
Development Success . 431
Dedicated Team Members .431
Collocation .432
Done	Means	Shippable .433
Address	What	Scrum	Exposes .433
Clear	Product	Vision	and	Roadmap .433
Product	Owner	Empowerment .434
Developer	Versatility .434
Scrum	Master	Clout .435
Leadership	Support	for	Learning .435
Transition	Support .436

CHAPTER 23: Ten Signs That You’re Not Agile . 437
A	Non-Shippable	Sprint	Product	Increment .437
Long	Release	Cycles .438
Disengaged	Stakeholders .439
Lack of Customer Contact .440
Lack	of	Skill	Versatility .441
Automatable	Processes	Remain	Manual .442
Prioritizing Tools over the Work .442
High	Manager-to-Creator	Ratio .444
Working	around	What	Scrum	Exposes .445
Practicing	Faux	Agile .446

CHAPTER 24:	Ten	Valuable	Resources	for	Agile	
Professionals . 449
Agile	Project	Management	For	Dummies	Online	Cheat	Sheet 449
Scrum	For	Dummies .450
The	Scrum	Alliance .450
The Agile Alliance .450
International	Consortium	for	Agile	(ICAgile) .451
Mind the Product and ProductTank .451
Lean Enterprise Institute .451
Extreme	Programming .452
The Project Management Institute Agile Community 452
Platinum Edge .452

INDEX . 455

Introduction 1

Introduction

Welcome to Agile Project Management For Dummies, 3rd Edition. Agile proj-
ect management has grown to be as common as any management tech-
nique for product development — and not only software product

development. For nearly two decades, we have trained and coached companies big
and small, all over the world, about how to become more nimble, adaptive, and
responsive in both the development of their products and their organizations — in
other words, how to become more agile. Through this work, we found there was a
need to write a digestible guide that anyone, regardless of experience, could
understand.

About This Book
Agile Project Management For Dummies, 3rd Edition is more than just an introduc-
tion to agile practices and approaches; you also discover the steps to become more
agile in mindset and behavior. The material here goes beyond theory and is meant
to be a field guide for all experience levels, giving you the tools and information
you need to be successful with agile techniques in the trenches of product
development.

Foolish Assumptions
This book was written as a reference guide for anyone wanting to learn more
about business agility. If you strive to be more agile in responding to customer
needs and problems — whether or not you’re an organizational leader, a project
manager, a member of a product team, an agile enthusiast, or a product
 stakeholder — this book will help you on your journey.

Regardless of your experience or level of familiarity, this book provides insights
you may find helpful. We hope it brings clarity to any confusion or myths regard-
ing agile product development you may have encountered.

2 Agile Project Management For Dummies

Icons Used in This Book
Throughout this book, you’ll find the following icons.

Tips are points to help you along your agile product development journey. Tips
can save you time and help you quickly understand a particular topic, so when you
see them, take a look!

The Remember icon is a reminder of something you may have seen in past chap-
ters. It also may be a reminder of a commonsense principle that is easily forgot-
ten. These icons can help jog your memory when an important term or concept
appears.

The Warning icon indicates that you want to watch out for a certain action or
behavior. Read these to steer clear of big problems!

The Technical Stuff icon indicates information that is interesting but not essential
to the text. If you see a Technical Stuff icon, you don’t need to read it to under-
stand agile product development, but the information there might just pique your
interest.

On the Web means that you can find more information on the book’s website at
www.dummies.com/go/agileprojectmanagementfd3e.

Beyond the Book
Although this book broadly covers the agile project management spectrum, we
can cover only so much in a set number of pages! If you find yourself at the end of
this book thinking, “This was an amazing book! Where can I learn more about
how to advance my products under an agile approach?” check out Chapter 24 or
head over to www.dummies.com for more resources.

We’ve provided a cheat sheet for tips on assessing your current product
 development efforts in relation to agile principles as well as free tools for managing
projects using agile techniques. To get to the cheat sheet, go to www.dummies.com,
and then type Agile Project Management For Dummies Cheat Sheet in the Search box.
This is also where you’ll find any significant updates or changes that occur
between editions of this book.

Introduction 3

Where to Go from Here
We wrote this book so that you could read it in just about any order. Depending on
your role, you may want to pay extra attention to the appropriate sections of the
book. For example:

 » If you’re just starting to learn about product development and agile
approaches, start with Chapter 1 and read the book straight through
to the end.

 » If you’re a member of a product team and want to know the basics of agile
product development, check out the information in Part 3 (Chapters 9
through 12).

 » If you’re a project manager transitioning to agile approaches to product
development, you may be interested to learn how agile techniques improve
the management of time, cost, scope, procurement, quality, and risk. Review
Part 4 (Chapters 13 through 17).

 » If you know the basics of agile product development and are looking at
bringing agile practices to your company or expanding your agile footprint
across your organization, Part 5 (Chapters 18 through 20) will provide you
with helpful information.

1Understanding
Agility

IN THIS PART . . .

Understand why project management has modernized
due to the flaws and weaknesses in historical approaches
to project management.

Find out why agile methods are becoming more product-
focused than project-focused, and become acquainted
with the foundation of agile product development: the
Agile Manifesto and the 12 Agile Principles.

Discover the advantages that your products, projects,
teams, customers, and organization can gain from
adopting agile techniques.

Understand the importance of placing the customer’s
needs first and why agile techniques help to make the
customer central to every decision, functionality, and
problem.

CHAPTER 1 Modernizing Project Management 7

Chapter 1
Modernizing Project
Management

Agile is a descriptor of a mindset approach to project management that
focuses on early delivery of business value, continuous improvement of
the product being created and the processes used to create the product,

scope flexibility, team input, and delivering well-tested products that reflect cus-
tomer needs.

In this chapter, you find out why agile processes emerged as an approach to soft-
ware development project management in the mid-1990s and why agile method-
ologies have caught the attention of project managers, customers who invest in
the development of new products and services, and executives whose companies
fund product development. While business agility is popular in software product
development, agile values, principles, and techniques apply in a multitude of
industries and applications — not just software. This chapter also explains the
advantages of agile approaches over long-standing project management
methodologies.

IN THIS CHAPTER

 » Understanding why project
management needs to change

 » Seeing how agile project
management is becoming agile
product management

 » Finding out about agile product
development

8 PART 1 Understanding Agility

Project Management Needed a Makeover
A project is a planned program of work that requires a definitive amount of time,
effort, and planning to complete. Projects have goals and objectives and often
must be completed in some fixed period of time and within a certain budget.

Because you’re reading this book, you’re likely a project manager or someone who
initiates projects, works on projects, or is affected by projects in some way.

Agile approaches are a response to the need to modernize project management. To
understand how agile approaches are revolutionizing product development, it
helps to know a little about the history and purpose of project management and
the issues that projects face today.

The origins of modern project management
Projects have been around since ancient times. From the Great Wall of China to the
Mayan pyramids at Tikal, from the invention of the printing press to the invention
of the Internet, people have accomplished endeavors big and small in projects.

As a formal discipline, project management as we know it has been around only
since the middle of the twentieth century. Around the time of World War II,
researchers around the world were making major advances in building and pro-
gramming computers, mostly for the United States military. To complete those
projects, they started creating formal project management processes. The first
processes were based on step-by-step manufacturing models the United States
military used during World War II.

People in the computing field adopted these step-based manufacturing processes
because early computer-related projects relied heavily on hardware, with com-
puters that filled up entire rooms. Software, by contrast, was a smaller part of
computer projects. In the 1940s and 1950s, computers might have thousands of
physical vacuum tubes but fewer than 30 lines of programming code. The 1940s
manufacturing process used on these initial computers is the foundation of the
project management methodology known as waterfall.

In 1970, a computer scientist named Winston Royce wrote “Managing the Devel-
opment of Large Software Systems,” an article for the IEEE that described the
phases in the waterfall methodology. The term waterfall was coined later, but the
phases, even if they are sometimes titled differently, are essentially the same as
originally defined by Royce:

CHAPTER 1 Modernizing Project Management 9

1. Requirements

 2. Design

 3. Development

 4. Integration

 5. Testing

 6. Deployment

On waterfall projects, you move to the next phase only when the prior one is
 complete — hence the name waterfall.

Pure waterfall project management — completing each step in full before moving
to the next step — is actually a misinterpretation of Royce’s suggestions. Royce
identified that this approach was inherently risky and recommended developing
and testing within iterations to create products — suggestions that were over-
looked by many organizations that adopted the waterfall methodology.

The waterfall methodology was the most common project management approach
in software development until it was surpassed by improved approaches based on
agile techniques around 2008.

The problem with the status quo
Computer technology has, of course, changed a great deal since the last century.
Many people have a computer on their wrist with more power, memory, and capa-
bilities than the largest, most expensive machine that existed when people first
started using waterfall methodologies.

At the same time, the people using computers have changed as well. Instead of
creating behemoth machines with minimal programs for a few researchers and
the military, people create hardware and software for the general public. In many
countries, almost everyone uses a tablet or smartphone, directly or indirectly,
every day. Software runs our cars, our appliances, our homes; it provides our daily
information and daily entertainment. Even young children use computers
—2-year-olds are almost more adept with the iPhone than their parents. The
demand for newer, better products is constant.

Somehow, during all this growth of technology, processes were not left behind.
Software developers are still using project management methodologies from the
1950s, and all these approaches were derived from manufacturing processes
meant for the hardware-heavy computers of the mid-twentieth century.

10 PART 1 Understanding Agility

Today, traditional projects that do succeed often suffer from one problem:
scope bloat, the introduction of unnecessary product features. Think about the
software products you use every day. For example, the word-processing program
we’re typing on right now has many features and tools. Even though we write
with this program every day, we use only some of the features all the time. We use
other elements less frequently. And we have never used quite a few tools — and
come to think of it, we don’t know anyone else who has used them, either. The
features that few people use are the result of scope bloat.

Scope bloat appears in all kinds of software, from complex enterprise applications
to websites that everyone uses. Figure 1-1 shows data from a Standish Group study
that illustrates just how common scope bloat is. In the figure, you can see that
80 percent of requested features are infrequently or never used.

The numbers in Figure 1-1 illustrate an enormous waste of time and money. That
waste is a direct result of traditional project management processes that are una-
ble to accommodate change. Project managers and stakeholders know that change
is not welcome mid-project, so their best chance of getting a potentially desirable
feature is at the start of a project. Therefore, they ask for

 » Everything they need

 » Everything they think they may need

 » Everything they want

 » Everything they think they may want

The result is the bloat in features that results in the statistics in Figure 1-1.

FIGURE 1-1:
Actual use of

requested
software
features.

© Copyright 2017 Standish Group

CHAPTER 1 Modernizing Project Management 11

The problems associated with using outdated management and development
approaches are not trivial. These problems waste billions of dollars a year. The
billions of dollars lost in project failure in 2015 (see the sidebar, “Software project
success and failure”) could equate to millions of jobs around the world.

Over the past three decades, people working on projects have recognized the
growing problems with traditional project management and have been working to
create a better model.

Introducing Agile Project Management
The seeds for agile techniques have been around for a long time. In fact, agile
values, principles, and practices are simply a codification of common sense.
 Figure 1-2 shows a quick history of agile project management, dating to the 1930s
with Walter Sherwart’s Plan-Do-Study-Act (PDSA) approach to project quality.

SOFTWARE PROJECT SUCCESS AND FAILURE
Stagnation in traditional project management approaches is catching up with the soft-
ware industry. In 2015, a software statistical company called the Standish Group did a
study on the success and failure rates of 10,000 projects in the US. The results of the
study showed that

• 29 percent of traditional projects failed outright. The projects were cancelled before
they finished and did not result in any product releases. These projects delivered
no value whatsoever.

• 60 percent of traditional projects were challenged. The projects were completed
but had gaps between expected and actual cost, time, quality, or a combination
of these elements. The average difference between the expected and actual proj-
ect results — looking at time, cost, and features not delivered — was well over
100 percent.

• 11 percent of projects succeeded. The projects were completed and delivered the
expected product in the originally expected time and budget.

Of the hundreds of billions of dollars spent on product development in the US alone,
billions of dollars were wasted on projects that never deployed a single piece of
functionality.

12 PART 1 Understanding Agility

FIGURE 1-2: Agile project management timeline.

CHAPTER 1 Modernizing Project Management 13

In 1986, Hirotaka Takeuchi and Ikujiro Nonaka published an article called “The
New New Product Development Game” in the Harvard Business Review. Takeuchi
and Nonaka’s article described a rapid, flexible development strategy to meet
fast-paced product demands. This article first paired the term scrum with product
development. (Scrum referred to a player formation in rugby.) Scrum eventually
became one of the most popular agile frameworks for delivering value to
customers.

In 2001, a group of software and project experts got together to talk about what
their successful projects had in common. This group created the Manifesto for Agile
Software Development (commonly referred to as the Agile Manifesto), a statement
of values for successful software development:

Manifesto for Agile Software Development*

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.
* Agile Manifesto Copyright © 2001: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

This declaration may be freely copied in any form, but only in its entirety through this notice.

These experts also created 12 principles behind the Agile Manifesto that help support
the values in the Agile Manifesto. We list the Agile Principles and describe the
Agile Manifesto in more detail in Chapter 2.

Agile, in product development terms, is a descriptor for approaches that focus on
people, communications, the product, and flexibility. If you’re looking for the
agile methodology, you won’t find it. However, all agile methodologies (for exam-
ple, Crystal), frameworks (for example, scrum), techniques (for example, user
story requirements), and tools (for example, relative estimating) have one thing
in common: adherence to the Agile Manifesto and the 12 Agile Principles.

Martin Fowler, one of the co-authors of the Agile Manifesto, writes that many
different words were discussed for naming their movement. They considered
lightweight methods, adaptive, and many others until landing on agile as the best
descriptor of the adaptiveness and responsiveness to change they were seeking.

14 PART 1 Understanding Agility

Other synonyms are resilient, nimble, and healthy. When you think of agile, think
healthy. Healthy organizations and teams are agile, resilient, nimble, and
responsive.

How agile projects work
Agile approaches are based on an empirical control method — a process of making
decisions based on the realities observed in the project. In the context of software
development methodologies, an empirical approach can be effective in both new
product development and enhancement and upgrade projects. By using frequent
and firsthand inspection of the work to date, you can make immediate adjust-
ments, if necessary. Empirical control requires

 » Unfettered transparency: Everyone involved in an agile project knows what
is going on and how the project is progressing.

 » Frequent inspection: The people who are invested in the product and
process the most regularly evaluate the product and process.

 » Immediate adaptation: Adjustments are made quickly to minimize prob-
lems; if an inspection shows that something should change, it is changed
immediately.

To accommodate frequent inspection and immediate adaptation, agile projects
work in iterations (smaller segments of the overall project). An agile product
development effort involves the same type of work as in a traditional waterfall
project: You create requirements and designs, develop product features, document
what was done and why, and continuously integrate new features. You test the
product, fix any problems, and deploy the product for use. However, instead of
completing these steps for all product features at once, as in a waterfall project,
you break the project into iterations, also called sprints.

Figure 1-3 shows the difference between a linear waterfall project and an agile
project.

Mixing traditional project management methods with agile approaches is like
saying, “I have a Tesla Model S. However, I’m using a wagon wheel on the front
left side. How can I make my car as fast and efficient as the other Teslas?” The
answer, of course, is you can’t. If you fully commit to an agile approach, you will
have a better chance of project success.

CHAPTER 1 Modernizing Project Management 15

FIGURE 1-3: Waterfall versus agile project.

16 PART 1 Understanding Agility

Agile Project Management Is Becoming
Agile Product Management

Traditional projects, by definition, are organized into temporary, build-only team
efforts designed to accomplish specific benefits projected in a business case. Proj-
ect initiation, which is when we know the least, is when budgets, schedules, and
expectations are set. When projects end, the teams are disbanded and unfamiliar
operational teams are left to support the customer and product. If more work is
required, new team members are allocated to a new project and must refamiliarize
themselves with the product architecture. Projects typically end once deliverables
are released into production, leaving others to support and evaluate the effect on
business.

Today, products are considered long-term, value-creating assets requiring
 permanent teams who iteratively elaborate, design, develop, test, integrate,
 document, and even support products until business outcomes are achieved.
A high-performing team continuously inspects and adapts until the customer’s
problems are solved, and the team retains this hard-earned knowledge. The team
and customer collaborate to create value over following written specifications.

More and more we see a project-driven approach as a constraint to delivering
customer value early and often. Taking an agile approach to product development
limits you not to time or money but to value. Organizations most effectively
deliver value when they use the following formula to determine when it’s time to
shift priorities:

AC + OC > V, that is, actual cost + opportunity cost > value

When the actual cost of working on a product’s additional requirements plus the
opportunity cost of not working on a different investment opportunity exceed the
expected value of delivering those remaining product requirements, the team
shifts to developing the more valuable investment opportunity.

Differences between managing a project
versus developing a product
Three primary differences exist between managing a project and developing a
product:

CHAPTER 1 Modernizing Project Management 17

 » Products benefit most from stable, long-lived, and even permanent teams.

 » Products can be not only short-term assets but also long-term assets. Active
products are never really finished because they require maintenance and
improvements.

 » Products are part of a portfolio designed to maximize value over following
specifications.

Permanent team over temporary team
Long-lived products are best developed and maintained by long-lived and even
permanent teams. The longer a team works together iteratively building an emer-
gent architecture and expanding its capability and high performance, the better
the team understands the customer and the more predictable the team becomes.
Project-focused teams come together for a specific amount of time and then move
on to something new. Lessons learned at the end of a project may not even apply
to the next project because the context of people, technologies, and customers will
most likely be different. Stable permanent teams enable transparency, inspection,
and adaptation (empirical process control).

Permanent doesn’t mean that agile product teams don’t change and career
aspirations are inhibited. However, team personnel changes are an exception
rather than the rule. People — especially people who become more valuable because
of their expanding capability — are presented with career-enhancing opportunities.
Ideally, permanent team members behave more like a family than as a temporary,
one-project-only group.

Products as long-term assets rather
than project deliverables
Product development is risky. Uncertainty abounds at every corner. But uncer-
tainty is what makes agile product development ideal! Traditional projects are
tasked with accomplishing specific system deliverables within a fixed time frame,
but agile product development iteratively reduces uncertainty by building useable,
fully functional product increments, gathering and implementing feedback
throughout development. The product becomes a customer-aligned, problem-
solving asset. Active products are never finished because maintenance must be
performed and improvements can be made.

Investments in time, money, and people, particularly with today’s capital expen-
diture strategies, change products into depreciable assets that improve bottom-
line results for not only revenue but also cost savings. Treating product

18 PART 1 Understanding Agility

development as an asset creator rather than a cost expenditure changes the per-
spective of everyone involved. Continuous delivery of customer value through
agile product development increases the likelihood of additional funding.

Capital expenditures, commonly known as CapEx, are funds used by a company to
acquire, upgrade, and maintain physical assets such as property, buildings, indus-
trial plants, technology, and equipment. CapEx is often used to undertake new
projects or investments by the firm.

Pursuing value over specifications
Early failure is a key tenant of agility. Agile teams are obsessed with taking risks to
create customer value. Like scientists, they create a hypothesis, test it in the real
world, evaluate the results, and then adjust the hypothesis and test it again. They
repeat this process again and again, aligning the product more closely to the cus-
tomer’s needs with each iteration. Teams trade reams of documented specifications
for real-world feedback from the customer. With agile product development, func-
tionality priorities are set by the people most familiar with the problem to be solved.

Why agile product development
works better
Throughout this book, you see how product development with an agile approach
works better than with a traditional approach. Agile approaches can produce more
successful products. The Standish Group study, mentioned in the sidebar “Soft-
ware project success and failure,” found that while 29 percent of traditional proj-
ects failed outright, that number dropped to only 9 percent with agile techniques.
The decrease in failure for agile product development is a result of agile teams
making immediate adaptations based on frequent inspections of progress and
customer satisfaction.

Here are some key areas where agile product development approaches are supe-
rior to traditional project management methods:

 » Project success rates: In Chapter 17, you find out how the risk of cata-
strophic project failure falls to almost nothing with agile product develop-
ment. Agile approaches of prioritizing by business value and risk ensure early
success or failure. Agile approaches to testing throughout the product
development help ensure that you find problems early, not after spending a
large amount of time and money.

CHAPTER 1 Modernizing Project Management 19

 » Scope creep: In Chapters 9, 10, and 14, you see how agile approaches
accommodate changes throughout product development, minimizing scope
creep. Following agile principles, you can add new requirements at the
beginning of each sprint without disrupting development flow. By fully
developing prioritized features first, you prevent scope creep from threaten-
ing critical functionality.

 » Inspection and adaptation: In Chapters 12 and 16, you find details of how
regular inspections and adaptation work throughout agile product develop-
ment. Agile teams — armed with frequent feedback from complete develop-
ment cycles and working, shippable functionality — can improve their
processes and their products with each sprint.

Throughout many chapters in this book, you discover how business agility can
help you gain control of product outcomes. Testing early and often, adjusting pri-
orities as needed, using better communication techniques, and regularly demon-
strating and releasing product functionality allow you to fine-tune your control
over a wide variety of factors.

CHAPTER 2 Applying the Agile Manifesto and Principles 21

Chapter 2
Applying the Agile
Manifesto and Principles

This chapter describes the basics of what it means to be agile as outlined in
the Agile Manifesto, with its four values, and the 12 Agile Principles behind
the Agile Manifesto. We also expand on these basics with three additional

Platinum principles, which Platinum Edge (owned by Mark) crafted after years of
experience helping organizations improve their business agility.

This foundation provides product development teams with the information needed
to evaluate whether the team is following agile principles, as well as whether its
actions and behaviors are consistent with agile values. When you understand
these values and principles, you’ll be able to ask, “Is this agile?” and be confident
in your answer. To learn more about development teams, see Chapter 7.

Understanding the Agile Manifesto
In the mid-1990s, the Internet was changing the world right before our eyes. The
people working in the booming dot-com industry were under constant pressure to
be the first-to-market with fast-changing technologies. Development teams
worked day and night, struggling to deliver new software releases before com-
petitors made their companies obsolete. The information technology (IT) industry
was completely reinvented in a few short years.

IN THIS CHAPTER

 » Defining the Agile Manifesto and the
12 Agile Principles

 » Describing the Platinum Principles

 » Understanding what has changed in
project management

 » Taking the agile litmus test

22 PART 1 Understanding Agility

Given the pace of change at that time, cracks inevitably appeared in conventional
project management practices. Using traditional methodologies such as waterfall,
which is discussed in Chapter 1, didn’t allow developers to be responsive enough
to the market’s dynamic nature and to emerging new approaches to business.
Development teams started exploring alternatives to these outdated approaches to
project management. In doing so, they noticed some common themes that pro-
duced better results.

In February 2001, 17 of these new methodology pioneers met in Snowbird, Utah,
to share their experiences, ideas, and practices; to discuss how best to express
them; and to suggest ways to improve the world of software development. They
couldn’t have imagined the effect their meeting would have on the future of proj-
ect management. The simplicity and clarity of the manifesto they produced and
the subsequent principles they developed transformed the world of information
technology and continue to revolutionize product development in every industry,
not just software.

Over the next several months, these leaders constructed the following:

 » The Agile Manifesto (originally the Manifesto for Agile Software
Development): An intentionally streamlined expression of core develop-
ment values

 » The Agile Principles: A set of 12 guiding concepts that support product
development teams in delivering value and staying on track

 » The Agile Alliance: A community development organization focused on
supporting individuals and organizations applying agile principles and
practices

The group’s work was destined to make the software industry more productive,
more humane, and more sustainable.

The Agile Manifesto is a powerful statement, carefully crafted using fewer than 75
words:

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

CHAPTER 2 Applying the Agile Manifesto and Principles 23

That is, while there is value in the items on
the right, we value the items on the left more.
* Agile Manifesto Copyright © 2001: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

This declaration may be freely copied in any form, but only in its entirety through this notice.

No one can deny that the Agile Manifesto is both a concise and an authoritative
statement. Whereas traditional approaches emphasize a rigid plan, avoid change,
document everything, and encourage hierarchical-based control, the manifesto
focuses on

 » People

 » Communications

 » Product

 » Flexibility

The Agile Manifesto represents a big shift in focus in how products are conceived,
conducted, and managed. If we read only the items on the left, we understand the
new paradigm that the manifesto signers envisioned. They found that by focusing
more attention on individuals and interactions, teams would more effectively
produce working software through valuable customer collaboration and by
responding well to change. In contrast, the traditional primary focus on processes
and tools often produces comprehensive or excess documentation to comply with
contract negotiations and to follow an unchanging plan.

Research and experience illustrate why agile values are so important:

 » Individuals and interactions over processes and tools: Why? Because
research shows a 50 times increase in performance when we get individuals
and interactions right. One of the ways to get this right is by collocating a
development team with an empowered product owner.

 » Working software over comprehensive documentation: Why? Because
failure to test for and correct defects during the sprint can take up to 24 times
more effort and cost in the next sprint. And after the functionality is deployed
to the market, if a production support team that wasn’t involved in product
development performs the testing and fixing, the cost is up to 100 times
more.

 » Customer collaboration over contract negotiation: Why? Because a
dedicated and accessible product owner can generate a fourfold increase in

24 PART 1 Understanding Agility

productivity by providing in-the-moment clarification to the development
team, aligning customer priorities with the work being performed.

 » Responding to change over following a plan: Why? Because 80 percent of
features developed under a waterfall model are infrequently or never used
(as discussed in Chapter 1). Starting with a plan is vital, but the start is when
we know the least. Product development teams don’t plan less than waterfall
teams — they plan as much or more. However, teams take a just-in-time
approach, planning just enough when needed in support of a strategic
product vision and roadmap. Adaptation of the plan to the realities along the
way is how teams avoid wasteful functionality and deliver products that
delight customers.

The creators of the Agile Manifesto originally focused on software development
because they worked in the IT industry. However, agile techniques have spread
beyond software development and even outside computer-related products.
Today, agile approaches such as scrum are disrupting biotech, manufacturing,
aerospace, engineering, marketing, building construction, finance, shipping,
automotive, utility, and energy industries with companies such as Apple, Micro-
soft, and Amazon leading the way. If you want early empirical feedback on the
product or service you’re providing, you can benefit from agile methods.

The State of Scrum 2017-2018 report quoted a Scrum Alliance board member who
said, “Any organization that does not go through an Agile transformation will die.
It is the same as a company refusing to use computers.”

The Agile Manifesto and Agile Principles directly refer to software; we leave these
references intact when quoting the manifesto and principles throughout the book.
If you create non-software products, try substituting your product as you read on.
Agile values and principles apply to all product development activities, not just
software.

Outlining the Four Values
of the Agile Manifesto

The Agile Manifesto was generated from experience, not from theory. As you
review the values described in the following sections, consider what they would
mean if you put them into practice. How do these values support meeting
time-to-market goals, dealing with change, and valuing human innovation?

CHAPTER 2 Applying the Agile Manifesto and Principles 25

Although the agile values and principles are not numbered, we’ve numbered them
here and throughout the book for ease of reference. The numbering matches their
order in the manifesto.

Value 1: Individuals and interactions
over processes and tools
When you allow each person to contribute his or her unique value to a product, the
result can be powerful. When these human interactions focus on solving prob-
lems, a unified purpose can emerge. Moreover, the agreements come about
through processes and tools that are much simpler than conventional ones.

A simple conversation in which you talk through a product issue can solve many
problems in a relatively short time. Trying to emulate the power of a direct con-
versation with email, spreadsheets, and documents results in significant overhead
costs and delays. Instead of adding clarity, these types of managed, controlled
communications are often ambiguous and time-consuming and distract the
development team from the work of creating a product.

Consider what it means if you value individuals and interactions highly. Table 2-1
shows some differences between valuing individuals and interactions and valuing
processes and tools.

You can find a blank template of Table 2-1 on the book’s companion website at
http://www.dummies.com/go/agileprojectmanagementfd3e. Jot down the pros
and cons of each approach that apply to you and your products.

If processes and tools are seen as the way to manage product development and
everything associated with it, people and the way they approach the work must
conform to the processes and tools. Conformity makes it hard to accommodate
new ideas, new requirements, and new thinking. Agile approaches, however, value
people over process. This emphasis on individuals and teams puts the focus on
their energy, innovation, and ability to solve problems. You use processes and
tools in agile product management, but they’re intentionally streamlined and
directly support product creation. The more robust a process or tool, the more you
spend on its care and feeding and the more you defer to it. With people front and
center, however, the result is a leap in productivity. An agile environment is
human-centric and participatory and can be readily adapted to new ideas and
innovations.

26 PART 1 Understanding Agility

Value 2: Working software over
comprehensive documentation
A development team’s focus should be on producing working functionality. With
agile development, the only way to measure whether you are truly finished with a
product requirement is to produce the working functionality associated with that
requirement. For software products, working software means the software meets
what we call the definition of done: at the very least, developed, tested, integrated,
and documented. After all, the working product is the reason for the investment.

Have you ever been in a status meeting where you reported that you were, say,
75 percent done with your project? What would happen if your customer told
you, “We ran out of money. Can we have our 75 percent now?” On a traditional
project, you wouldn’t have any working software to give the customer; 75 percent
done traditionally means you are 75 percent in progress and 0 percent done. With

TABLE 2-1	 Individuals and Interactions versus Processes and Tools

Individuals and Interactions Have High Value
Processes and Tools Have
High Value

Pros Communication is clear and effective.

Communication is quick and efficient.

Teamwork becomes strong as people work together.

Development teams can self-organize.

Development teams have more chances to innovate.

Development teams can quickly adjust processes as
necessary.

Development team members can take personal ownership of
the product.

Development team members can have deeper job
satisfaction.

Processes are clear and can be
easy to follow.

Written records of communication
exist.

Cons To enable more team empowerment and less command and
control, managers may have to unlearn traditional leadership
tendencies.

People may need to let go of ego to work well as members
of a team.

People may over-rely on processes
instead of finding the best ways to
create good products.

One process doesn’t fit all
teams — different people have dif-
ferent work styles.

One process doesn’t fit
all products.

Communication can be ambigu-
ous and time-consuming.

CHAPTER 2 Applying the Agile Manifesto and Principles 27

agile product development, however, by using the definition of done, you would
have working, potentially shippable functionality for 75 percent of your product
requirements — the highest-priority 75 percent of requirements.

Although agile approaches have roots in software development, you can use them
for other types of products. This second agile value can easily read, “Working
functionality over comprehensive documentation.”

Tasks that distract from producing valuable functionality must be evaluated to see
whether they support or undermine the job of creating a working product. Table 2-2
shows a few examples of traditional project documents and their usefulness. Think
about whether documents produced on a recent project you were involved in added
value to the functionality being delivered to your customer.

With agile product development, barely sufficient is a positive description, meaning
that a task, document, meeting, or almost anything created includes only what it
needs to achieve the goal. Being barely sufficient is practical and efficient — it’s
sufficient, just enough. The opposite of barely sufficient is gold-plating, or adding
unnecessary frivolity — and effort — to a feature, task, document, meeting, or
anything else.

All development requires some documentation. With agile product development,
documents are useful only if they support development and are barely sufficient
to serve the design, delivery, and deployment of a working product in the most
direct, unceremonious way. Agile approaches dramatically simplify the adminis-
trative paperwork relating to time, cost control, scope control, or reporting.

You can find a blank template of Table 2-2 at www.dummies.com/go/agile
projectmanagementfd3e. Use that form to assess how well your documentation
directly contributed to the product and whether it was barely sufficient.

We’ll often stop producing a document and see who complains. After we know the
requester of the document, we’ll strive to better understand why the document is
necessary. The five whys work great in this situation — ask “why” after each suc-
cessive answer to get to the root reason for the document. After you know the core
reason for the document, see how you can satisfy that need with an agile artifact
or streamlined process.

Product development teams produce fewer, more streamlined documents that
take less time to maintain and provide better visibility into potential issues. In the
coming chapters, you find out how to create and use simple tools (such as a prod-
uct backlog, a sprint backlog, and a task board) that allow teams to understand
requirements and assess real-time status daily. With agile approaches, teams
spend more time on development and less time on documentation, resulting in a
more efficient delivery of a working product. See Chapter 9 for more on the prod-
uct backlog, and see Chapter 10 to learn more about the sprint backlog.

28 PART 1 Understanding Agility

Value 3: Customer collaboration
over contract negotiation
The customer is not the enemy. Really.

Historical project management approaches usually limit customer involvement to
a few development stages:

TABLE 2-2	 Identifying Useful Documentation

Document
Does the Document Add to
Product Value?

Is the Document Barely Sufficient
or Gold-Plated?

Project schedule created
with expensive project
management software,
complete with Gantt chart

No.

Start-to-finish schedules with
detailed tasks and dates tend to
provide more than what is neces-
sary for product development.
Also, many of these details change
before you develop future
features.

Gold-plated.

Although project managers may spend
a lot of time creating and updating proj-
ect schedules, team members tend to
want to know only key deliverable
dates. Management often wants to
know only whether the deliverable is on
time, ahead of schedule, or behind.

Requirements
documentation

Yes.

All products have requirements —
details about product features and
needs. Development teams need
to know those needs to create a
product.

Possibly gold-plated; should be barely
sufficient.

Requirements documents can easily
grow to include unnecessary details.
Agile approaches provide simple ways
to enable product requirement
conversations.

Product technical
specifications

Yes.

Documenting how you created a
product can make future changes
easier.

Possibly gold-plated; should be barely
sufficient.

Agile documentation includes just what
it needs — development teams often
don’t have time for extra flourishes and
are keen to minimize documentation.

Weekly status report No.

Weekly status reports are for man-
agement purposes but do not
assist product creation.

Gold-plated.

Knowing status is helpful, but tradi-
tional status reports contain outdated
information and are much more bur-
densome than necessary.

Detailed project communi-
cation plan

No.

Although a contact list can be
helpful, the details in many com-
munication plans are useless to
product development teams.

Gold-plated.

Communication plans often end up being
documents about documentation — an
egregious example of busywork.

CHAPTER 2 Applying the Agile Manifesto and Principles 29

 » Start of a project: When the customer and the project team negotiate
contract details.

 » Any time the scope changes during the project: When the customer and
the project team negotiate changes to the contract.

 » End of a project: When the project team delivers a completed product to the
customer. If the product doesn’t meet the customer’s expectations, the
project team and the customer negotiate additional changes to the contract.

This historical focus on negotiation, avoidance of scope change, and limitation of
direct customer involvement discourages potentially valuable customer input and
can even create an adversarial relationship between customers and project teams.

You will never know less about a product than at its start. Locking product details
into a contract at the beginning of development means you have to make decisions
based on incomplete knowledge. If you have flexibility for change as you learn
more about a product and the customer the product is serving, you’ll ultimately
create better products.

The agile pioneers understood that collaboration, rather than confrontation, pro-
duced better, leaner, more useful products. As a result of this understanding, agile
methods make the customer part of the product development on an ongoing basis.

Using an agile approach in practice, you’ll experience a partnership between the
customer and the product development team in which discovery, questioning,
learning, and adjusting during the course of development are routine, acceptable,
and systematic. This partnership results in superior products better suited for the
customer’s needs.

Value 4: Responding to change
over following a plan
Change is a valuable tool for creating great products. Teams that can respond
quickly to customers, product users, and the market are able to develop relevant,
helpful products that people want to use.

Unfortunately, traditional project management approaches attempt to wrestle the
change monster and pin it to the ground so it goes out for the count. Rigorous
change management procedures and budget structures that can’t accommodate
new product requirements make changes difficult. Traditional project teams often
find themselves blindly following a plan, missing opportunities to create more
valuable products or, even worse, unable to react timely to changing market
conditions.

30 PART 1 Understanding Agility

Figure 2-1 shows the relationship between time, opportunity for change, and the
cost of change on a traditional project. As time — and knowledge about your
product — increases, the ability to make changes decrease, and costs more.

By contrast, agile development accommodates change systematically. The flexi-
bility of agile approaches increases stability because product changes are predict-
able and manageable — in other words, it’s expected and nondisruptive to a
product development team. In later chapters, you discover how agile approaches
to planning, working, and prioritization allow teams to respond quickly to change.

As new events unfold, the team incorporates these realities into the ongoing work.
Any new item becomes an opportunity to provide additional value instead of an
obstacle to avoid, giving development teams a greater opportunity for success.

Defining the 12 Agile Principles
In the months following the publication of the Agile Manifesto, the original sig-
natories continued to communicate. To support teams making the transition to
agile approaches, they augmented the four values of the Agile Manifesto with 12
principles.

These principles, along with the Platinum principles (explained later in the “Add-
ing the Platinum Principles” section), can be used as a litmus test to see whether
the specific practices of your team are true to the intent of the agile movement.

FIGURE 2-1:
Traditional

project
opportunity
for change.

CHAPTER 2 Applying the Agile Manifesto and Principles 31

Following is the text of the original 12 principles, published in 2001 by the Agile
Alliance:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

These agile principles provide practical guidance for development teams.

Another way of organizing the 12 principles is to consider them in the following
four distinct groups:

 » Customer satisfaction

 » Quality

 » Teamwork

 » Product development

The following sections discuss the principles according to these groups.

32 PART 1 Understanding Agility

Agile principles of customer satisfaction
Agile approaches focus on customer satisfaction, which makes sense. After all, the
customer is the reason for developing the product in the first place.

While all 12 principles support the goal of satisfying customers, principles 1, 2, 3,
and 4 stand out for us:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

You may define the customer of a product in a number of ways:

 » The customer is the person or group paying for the product.

 » In some organizations, the customer may be a client, external to the
organization.

 » In other organizations, the customer may be a stakeholder or a group of
stakeholders in the organization.

 » The person who ends up using the product is also a customer. For clarity and
to be consistent with the original 12 Agile Principles, we call that person the
user.

How do you enable these principles? Consider the following:

 » Scrum teams (scrum is a popular agile framework you learn more about in
Chapter 5) include a product owner, a person who is responsible for translating
what the customer wants into product requirements. To learn more about the
role of the product owner, see Chapter 7.

 » The product owner prioritizes product features in order of business value or
risk and communicates priorities to the development team. The development
team delivers the most valuable features on the list in short cycles of develop-
ment, known as iterations, or sprints.

CHAPTER 2 Applying the Agile Manifesto and Principles 33

 » The product owner has deep and ongoing involvement throughout each day
to clarify priorities and requirements, make decisions, provide feedback, and
quickly answer the many questions that pop up during product development.

 » Frequent delivery of working product features allows the product owner and
the customer to have a full sense of how the product is developing.

 » As the development team continues to deliver complete, working, potentially
shippable functionality every one to eight weeks or less, the value of the total
product grows incrementally, as do its functional capabilities.

 » The customer accumulates value for his or her investment regularly by
receiving new, ready-to-use functionality throughout development, rather
than waiting until the end for the first, and maybe only, delivery of releasable
product features.

In Table 2-3, we list some customer satisfaction issues that commonly arise dur-
ing product development. Use Table 2-3 and gather some examples of customer
dissatisfaction that you’ve encountered. Do you think becoming more agile would
make a difference? Why or why not?

You can find a blank template of the form at www.dummies.com/go/
agileprojectmanagementfd3e.

TABLE 2-3	 Customer Dissatisfaction and How Agile Might Help
Examples of Customer
Dissatisfaction with Product
Development How Agile Approaches Can Increase Customer Satisfaction

The product requirements were
misunderstood by the develop-
ment team.

Product owners work closely with the customer to define and refine
product requirements and provide clarity to the development team.

Product development teams demonstrate and deliver working function-
ality at regular intervals. If a product doesn’t work the way the customer
thinks it should work, the customer can provide feedback at the end of
the sprint, not at the end of development, when the feedback would be
too late.

The product wasn’t delivered
when the customer needed it.

Working in sprints allows teams to deliver high-priority functionality early
and often.

The customer can’t request
changes without additional cost
and time.

Agile processes are built for change. Development teams can accommo-
date new requirements, requirement updates, and shifting priorities
with each sprint — offsetting the cost of these changes by removing the
lowest-priority requirements — functionality that likely will never or
rarely get used.

34 PART 1 Understanding Agility

Agile strategies for customer satisfaction include the following:

 » Producing, in each iteration, the highest-priority features first

 » Ideally, locating the product owner and the other members of the team in the
same place to eliminate communication barriers

 » Breaking requirements into small chunks of value that can be delivered in
short iterations

 » Keeping written requirements simple, forcing more robust and effective
face-to-face communication

 » Getting the product owner’s acceptance as soon as functionality is completed

 » Revisiting the feature list regularly to ensure that the most valuable require-
ments continue to have the highest priority

Agile principles of quality
A product development team commits to producing quality in every product incre-
ment it creates — from development through documentation to integration and
test results — every day. Each team member contributes his or her best work all
the time. Although all 12 principles support the goal of quality delivery, principles
1, 3, 4, 6–9, and 12 stand out for us:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

CHAPTER 2 Applying the Agile Manifesto and Principles 35

These principles, in practice on a day-to-day basis, can be described as follows:

 » The development team members must have full ownership of technical
quality and be empowered to solve problems. They carry the responsibility for
determining how to create the product, deciding the technical work needed to
create it, and organizing product development. People not doing the work
don’t tell them how to do it.

 » With software development, an agile approach requires architectures that
make coding and testing the product modular, flexible, and extensible. The
design should address today’s problems and make inevitable changes as
simple as possible.

 » A set of designs on paper can never tell you that something will work because
everything works on paper. When the product quality is such that it can be
demonstrated and ultimately shipped in short intervals, everyone knows that
the product works — at the end of every sprint.

 » As the development team completes features, the team shows the product
owner the product functionality to get validation that it meets the acceptance
criteria. The product owner’s reviews should happen throughout the iteration,
ideally the same day that the development of the requirement was com-
pleted. Feedback from the product owner is often necessary even during the
development of a feature.

 » At the end of every iteration (lasting two weeks or less for most teams),
working functionality is demonstrated to the customer. Progress is clear and
easy to measure.

 » Testing is an integral, ongoing part of development and happens throughout
the day, not at the end of the iteration. As much as possible, testing is
automated. To learn more about automated testing, see Chapter 17.

 » With software development, ensuring new code is tested and integrates with
previous versions occurs in small increments, possibly several times a day (or
thousands of times a day in some organizations, such as Google, Amazon, and
Facebook). This process, called continuous integration (CI), helps ensure that
the entire solution continues to work when new code is added to the existing
code base.

 » With software development, examples of technical excellence include
establishing coding standards, using service-oriented architecture, implement-
ing automated testing, and building for future change.

Agile principles apply to more than software products. Technical excellence is
crucial whether you’re developing marketing campaigns, publishing books,
involved in manufacturing, or engaged in research and development. All
disciplines have a set of technical practices that teams can use to build in
quality all along the way.

36 PART 1 Understanding Agility

Agile approaches provide the following strategies for quality management:

 » Defining what done means (that is, shippable) at the beginning of develop-
ment and then using that definition as a benchmark for quality

 » Testing aggressively and daily through automated means

 » Building only the functionality needed when it’s needed

 » Reviewing the software code and streamlining (refactoring)

 » Showcasing to stakeholders and customers only the functionality that has
been accepted by the product owner

 » Having multiple feedback points throughout the day, iteration, and product
lifecycle

Agile principles of teamwork
Teamwork is critical to agile product development. Creating good products
requires cooperation among all members of the team, including customers and
stakeholders. Agile approaches support team-building and teamwork, and they
emphasize trust in self-managing development teams. A permanent, skilled,
motivated, unified, and empowered team is a successful team. To learn more
about permanent teams, see Chapter 8.

Although all 12 principles support the goal of teamwork, principles 4–6, 8, 11, and
12 stand out for us as supporting team empowerment, efficiency, and excellence:

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

CHAPTER 2 Applying the Agile Manifesto and Principles 37

Agile approaches focus on sustainable development; as knowledge workers, our
brains are the value we bring to product development. If only for selfish reasons,
organizations should want fresh, well-rested brains working for them. Maintain-
ing a regular work pace, rather than having periods of intense overwork, helps
keep each team member’s mind sharp and product quality high. This fact was
known as early as 1908, when Dr. Ernst Abbe quantified that reducing daily work
from 12 to 8 hours increased cumulative output. P. Sargant Florence, author of The
Economics of Fatigue and Unrest, showed that 8-hour days produce between 16 to
20 percent higher total output than 9-hour days.

Here are some practices you can adopt to make this vision of teamwork a reality:

 » Ensure that your development team members have the proper skills and
motivation.

 » Provide training sufficient to the task.

 » Support the self-organizing development team’s decisions about what to do
and how to do it; don’t have managers tell the team what to do.

 » Hold team members responsible as a single team, not as individuals.

 » Use face-to-face communication to quickly and efficiently convey information.

Suppose that you usually communicate to Sharon by email. You take time to
craft your message and then send it. The message sits in Sharon’s inbox, and
she eventually reads it. If Sharon has any questions, she writes another email
in response and sends it. That message sits in your inbox until you eventually
read it. And so forth. This type of table tennis communication is too inefficient
to use in the middle of a rapid iteration. A five-minute discussion addresses
the issue quickly and with less risk of misunderstanding — and with a reduced
cost of delay.

 » Have spontaneous conversations throughout the day to build knowledge,
understanding, and efficiency.

 » Collocate teammates in close proximity to increase clear and efficient
communication. If collocation isn’t possible, use video chat rather than email.
Teams who rely on written communication for collaboration are slower and
more prone to miscommunication errors. Written intra-team communication
is a liability.

 » Make sure that lessons learned is an ongoing feedback loop rather than an
end-of-project-only occurrence. Retrospectives should be held at the end of
each iteration, when reflection and adaptation can improve development
team productivity immediately going forward, creating ever higher levels of
efficiency. A lessons learned meeting at the end of development has minimal
value because the next product created might have a different group of
people and practices. To learn more about retrospectives, see Chapter 12.

38 PART 1 Understanding Agility

The first retrospective is as valuable (or even more valuable) as any future
retrospective because, at the beginning, the team has the opportunity to
make changes that can benefit the rest of the product development moving
forward.

The following strategies promote effective teamwork:

 » Collocate the development team so it has no physical barriers to effective and
real-time communication.

 » Put together a physical environment conducive for collaboration: a team
room with whiteboards, colored pens, and other tactile tools for developing
and conveying ideas to ensure shared understanding.

 » Create an environment where team members are encouraged to speak their
minds.

 » Meet face-to-face whenever possible. Don’t send an email if a conversation
can handle the issue.

 » Get clarifications throughout the day as they’re needed.

 » Encourage the team to solve problems rather than having managers solve
problems for the team.

 » Resist the temptation to shuffle team members. Allow the team to become a
stable, permanent, high-performing, capability-expanding team.

A long-term product perspective requires long-term, permanent teams.
High-performing teams take years to build. Their understanding of the
customer, their feedback from each release, the product support they
provide, and the product development environment logically encourage
teams to remain as stable as possible. Team members may seek new
opportunities for career development outside the team, but for the most part
teams should remain as constant as possible for maximum value. As each
new feature is built, the team remains constant, able to support and learn
from the product’s adoption by the customer.

Agile principles of product development
Agility in product management encompasses three key areas:

 » Making sure the development team can be productive and can sustainably
increase productivity over long periods of time

CHAPTER 2 Applying the Agile Manifesto and Principles 39

 » Ensuring that information about the product’s progress is available to
stakeholders without interrupting the flow of development activities by
asking the development team for updates

 » Handling requests for new features as they occur and integrating them into
the product development cycle

An agile approach focuses on planning and executing the work to produce the best
product that can be released. The approach is supported by communicating openly,
avoiding distractions and wasteful activities, and ensuring that the progress of the
product development is clear to everyone.

All 12 principles support product management, but principles 1–3 and 7–10 stand
out for us:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

Following are some advantages of adopting agile product management:

 » Product development teams achieve faster time-to-market and, consequently,
cost savings. They start development earlier than in traditional approaches
because agile approaches minimize the exhaustive up-front planning and
documentation that is conventionally part of the early stages of a water-
fall project.

 » Product development teams are self-organizing and self-managing. The
managerial effort normally put into telling developers how to do their work
can be applied to removing impediments and organizational distractions that
slow down the team.

 » Agile development teams determine how much work they can accomplish in
an iteration and commit to achieving those goals. Ownership is fundamentally

40 PART 1 Understanding Agility

different because the development team is establishing the commitment, not
complying with an externally developed commitment.

 » An agile approach asks, “What is the minimum goal we can set that still adds
value?” instead of focusing on including all features and extra refinements
that could possibly be needed. An agile approach usually means streamlining:
barely sufficient documentation, removal of unnecessary meetings, avoidance
of inefficient communication (such as email), and minimizing complexity of
what’s under the hood (just enough to make it work).

Creating complicated documents that aren’t useful for product development
is a waste of effort. It’s okay to document a decision, but you don’t need
multiple pages on the history and nuances of how the decision was made.
Keep the documentation barely sufficient (that is, sufficient but just barely),
and you’ll have more time to focus on supporting the development team.

 » By encapsulating development into short sprints that last several weeks or
less, you can adhere to the goals of the current iteration while accommodat-
ing change in subsequent iterations. The length of each sprint remains the
same throughout development to provide a predictable rhythm for the team
long-term.

 » Planning, elaborating on requirements, developing, testing, and demonstrat-
ing functionality occur within an iteration, lowering the risk of heading in the
wrong direction for extended periods of time or developing something that
the customer doesn’t want.

 » Agile practices encourage a steady pace of development that is productive and
healthy. For example, in the popular agile software development set of prac-
tices called extreme programming (XP), the maximum workweek is 40 hours,
and the preferred workweek is 35 hours. Agile product development is
constant and sustainable, as well as more productive, especially long term.

Traditional approaches routinely feature a death march, in which the team
puts in extremely long hours for days and even weeks at the end to meet a
previously unidentified and unrealistic deadline. As the death march goes on,
productivity tends to drop dramatically. More defects are introduced, and
because defects need to be corrected in a way that doesn’t break a different
piece of functionality, correcting defects is the most expensive work that
can be performed. Defects are often the result of overloading a system —
specifically demanding an unsustainable pace of work. Check out our
presentation on the negative effects of “Racing in Reverse” (https://
platinumedge.com/overtime).

 » Priorities, experience with the existing product, and, eventually, the speed at
which development will likely occur within each sprint are clear, making for
good decisions about how much can or should be accomplished in a given
amount of time.

CHAPTER 2 Applying the Agile Manifesto and Principles 41

If you’ve worked on a traditional project before, you might have a basic under-
standing of project management activities. In Table 2-4, we list a few project
management tasks, along with how you would meet those needs with agile
approaches. Use Table 2-4 to capture your thoughts about your experiences and
how agile approaches look different from traditional project management.

A blank template of Table 2-4 is available at www.dummies.com/go/agileproject
managementfd3e.

Successful product development is facilitated by the following agile approaches:

 » Supporting the development team with real-time answers to its questions,
shielding it from competing priorities, and empowering it to develop solutions
and determine how much work to take on in each iteration

 » Producing barely sufficient documents

 » Streamlining status reporting so that information is pushed out by the
development team in seconds rather than pulled out by a project manager
over a longer period of time

TABLE 2-4	 Contrasting Historical Project Management with Agile
Product Management

Traditional Project
Management Tasks Agile Approach to Product Development Tasks

Create a fully detailed project require-
ment document at the beginning of the
project. Try to control requirement
changes throughout the project.

Create a product backlog — a simple list of requirements by pri-
ority. Quickly update the product backlog as requirements and
priorities change throughout product development.

Conduct weekly status meetings with all
project stakeholders and developers.
Send detailed meeting notes and status
reports after each meeting.

The development team meets quickly, for no longer than 15 min-
utes, at the start of each day to coordinate and synchronize that
day’s work and any roadblocks. The team can update the cen-
trally visible burndown chart in under a minute at the end of
each day. Anyone, including stakeholders, can see the real-time
progress on demand.

Create a detailed project schedule with
all tasks at the beginning of the project.
Try to keep the project tasks on sched-
ule. Update the schedule on a regular
basis.

Work within sprints and identify only specific tasks for the active
sprint.

Assign tasks to the development team. Support the development team by removing impediments and
distractions. Development teams define and pull (as opposed to
push) their own tasks.

42 PART 1 Understanding Agility

 » Minimizing nondevelopment tasks

 » Setting expectations that change is normal and beneficial, not something to
be feared or evaded

 » Adopting a just-in-time requirements refinement to minimize change
disruption and wasted effort

 » Collaborating with the development team to create realistic schedules,
targets, and goals

 » Protecting the team from organizational disruptions that could undermine
product goals by introducing work that is not relevant to the product
objectives

 » Understanding that an appropriate balance between work and life is a
component of efficient development

 » Viewing the product as a long-term investment requiring permanent teams
pursuing value over specifications

Adding the Platinum Principles
Through in-the-trenches experience working with teams transitioning to agile
product development — and field testing in large, medium, and small organiza-
tions worldwide — we developed three additional principles of agile product
development that we call the Platinum principles:

 » Resist formality.

 » Think and act as a team.

 » Visualize rather than write.

You can explore each principle in more detail in the following sections.

Resisting formality
Even the most agile product development teams can drift toward excessive for-
malization. For example, it isn’t uncommon for us to find team members waiting
until a scheduled meeting to discuss simple issues that could be solved in seconds.
These meetings often have an agenda and meeting minutes and require a certain
level of demobilization and remobilization just to attend. In an agile approach,
this level of formalization isn’t required.

CHAPTER 2 Applying the Agile Manifesto and Principles 43

You should always question formalization and unnecessary, showy displays. For
example, is there an easier way to get what you need? How does the current activ-
ity support the development of a quality product as quickly as possible? Answering
these questions helps you focus on productive work and avoid unnecessary tasks.

In an agile system, discussions and the physical work environment are open and
free-flowing; documentation is kept to the lowest level of quantity and complex-
ity such that it contributes value to the product, not hamper it; and flashy dis-
plays, such as well-decorated presentations, are avoided. Professional, frank
communications are best for the team, and the entire organizational environment
has to make that openness available and comfortable.

Strategies for success in resisting formality include the following:

 » Reducing organizational hierarchy wherever possible by eliminating titles
in the team

 » Avoiding aesthetic investments such as elaborate slide presentations or
extensive meeting minute forms, especially when demonstrating shippable
functionality at the end of a sprint

 » Educating stakeholders who request complicated displays about the high
costs and low returns of such displays

Thinking and acting as a team
Team members should focus on how the team as a whole can be most productive.
This focus can mean letting go of individual niches and performance metrics. In
an agile environment, the entire team should be aligned in its commitment to the
goal, its ownership of the scope of work, and its acknowledgment of the time
available to achieve that commitment.

Following are some strategies for thinking and acting as a team:

 » Develop in pairs and switch partners often. Both pair programming (each
partner is knowledgeable in the area) and shadowing (only one partner is
knowledgeable in the area) raise product quality and team member capability
and reduce single points of failure. You can learn more about pair program-
ming in Chapter 17.

44 PART 1 Understanding Agility

 » Replace individual work titles with a uniform product developer title.
Development activities include all tasks necessary to take requirements
through to functionality, including design, implementation (for example,
coding), testing, and documentation — not just writing code or turning a
screwdriver.

 » Report at the team level only, as opposed to creating special management
reports that subdivide the team.

 » Replace individual performance metrics with team performance metrics.

Visualizing rather than writing
A product development team should use visualization as much as possible,
whether through simple diagrams or computerized modeling tools. Images are
much more powerful than words. When you use a diagram or mockup instead of a
document, your customer can relate better to the concept and the content.

Our ability to define the features of a system increases exponentially when we step
up our interaction with the proposed solution: A graphical representation is
almost always better than a textual one, and experiencing functionality hands-on
is best.

Even a sketch on a piece of paper can be a more effective communication tool than
a formal text-based document. A picture is worth a thousand words. A textual
description is the weakest form of communication if you’re trying to ensure com-
mon understanding — especially when the description is delivered by email with
the request to “let me know if you have any questions.”

Examples of strategies for visualization include the following:

 » Stocking the work environment with plenty of whiteboards, poster paper,
pens, and paper so that drawing tools are readily available

 » Using models instead of text to communicate concepts

 » Reporting status through charts, graphs, and dashboards, such as those in
Figure 2-2

CHAPTER 2 Applying the Agile Manifesto and Principles 45

Changes as a Result of Agile Values
The publication of the Agile Manifesto and the 12 Agile Principles legitimized and
focused the agile movement in the following ways:

 » Agile approaches changed attitudes toward product management
processes. In trying to improve processes, methodologists in the past worked
to develop a universal process that could be used under all conditions,
assuming that more process and greater formality would yield improved
results. This approach, however, required more time, overhead, and cost and
often diminished quality. The manifesto and the 12 principles acknowledged
that too much process is a problem, not a solution, and that the right process
in the right amount differs in each situation.

 » Agile approaches changed attitudes toward knowledge workers. IT
groups began to remember that development team members aren’t dispos-
able resources but individuals whose skills, talents, and innovation make a
difference to every product. The same product created by different team
members will be a different product.

FIGURE 2-2:
Charts and
graphs for
providing

transparency.

46 PART 1 Understanding Agility

 » Agile approaches changed the relationship between business and IT
groups. Agile product development addressed the problems associated with
the historical separation between business and IT by bringing these contribu-
tors together on the same team, at equal levels of involvement and with
shared goals.

 » Agile approaches corrected attitudes toward change. Historical
approaches viewed change as a problem to be avoided or minimized.
The Agile Manifesto and its principles helped identify change as an
 opportunity to ensure that the most informed ideas were implemented.

CHANGES TO COME
Enterprises are leveraging agile techniques on a large-scale basis to solve business
problems. Although the methodologies of agile IT groups, as well as non-IT groups, have
undergone radical transformation, the organizations around these groups have often
continued to use historical methodologies and concepts. For example, corporate fund-
ing and spending cycles are still geared toward the following:

• Long development efforts that deliver working software at the end of the project

• Annual budgeting

• An assumption that certainty is possible at the beginning of a project

• Corporate incentive packages focused on individual rather than team performance

The resulting tension keeps organizations from taking full advantage of the efficiency
and significant savings that agile techniques promise.

A truly integrated agile approach encourages organizations to move away from the last
century’s traditions and develop a structure at all levels that continually asks, “What’s
best for the customer, the product, and the team?”

A product development team can be only as agile as the organization it serves. As the
movement continues to evolve, the values articulated in the Agile Manifesto and its
 principles provide a strong foundation for the changes necessary to make individual
products, customer-driven solutions, and entire organizations more productive and
profitable. This evolution will be driven by passionate methodologists who continue to
explore and apply agile principles and practices.

CHAPTER 2 Applying the Agile Manifesto and Principles 47

The Agile Litmus Test
To be agile, you need to be able to ask, “Is this agile?” If you’re ever in doubt about
whether a particular process, practice, tool, or approach adheres to the Agile
 Manifesto or the 12 principles, refer to the following list of questions:

1. Does what we’re doing at this moment support the early and continuous
delivery of valuable software?

2. Does our process welcome change and take advantage of change?

3. Does our process lead to and support the delivery of working functionality?

4. Are the developers and the product owner working together daily? Are
customers and business stakeholders working closely with the team?

5. Does our environment give the team the support it needs to get the job done?

6. Are we communicating in person face-to-face rather than over the phone or
through email?

7. Are we measuring progress by the amount of working functionality produced?

8. Can we maintain our current pace of development indefinitely?

9. Do we support technical excellence and good design that allows for future
changes?

10. Are we maximizing the amount of work not done — namely, doing as little as
necessary to fulfill the product goal for our customer?

11. Is this development team self-organizing and self-managing? Does it have the
freedom to succeed?

12. Are we reflecting at regular intervals and adjusting our behavior accordingly?

If you answered “yes” to all these questions, congratulations; you’re likely
becoming more agile. If you answered “no” to any of these questions, what can
you do to change that answer to “yes”? You can come back to this exercise at any
time and use the agile litmus test for yourself, as well as with your team and the
wider organization.

CHAPTER 3 Why Being Agile Works Better 49

Chapter 3
Why Being Agile
Works Better

Agile approaches work well in the real world. Why is this? In this chapter,
you examine the mechanics of how agile processes improve the way people
work and how they prevent burdensome overhead. Comparisons with his-

torical methods highlight the improvements agile techniques bring.

When talking about agile product development advantages, the bottom line is
twofold: success and stakeholder satisfaction.

Evaluating Agile Benefits
The agile concept of product development is different from previous project man-
agement approaches and methodologies. As mentioned in Chapter 1, agile
approaches address key challenges of historical project management methods
such as waterfall, but they also go much deeper. Agile principles provide a frame-
work for how we want to work — how we naturally function when we solve com-
plex problems.

Historical methods of project management were developed not for contemporary
development lifecycles, such as new product development, but for simpler and
obvious systems. It’s no wonder that these project management methods don’t fit

IN THIS CHAPTER

 » Discovering the benefits of agile
product development

 » Comparing agile approaches to
historical approaches

 » Finding out why people like agile
techniques

50 PART 1 Understanding Agility

when attempting to build more complex, modern products, such as artificial
intelligence, aircraft, cybersecurity, medical devices, financial management sys-
tems, mobile applications, and web-centric, object-oriented applications, which
require constant innovation to stay competitive. Even with older technologies, the
track record of traditional methodologies is abysmal, especially when applied to
software development. For more details on the high failure rates of projects that
are run traditionally, check out the studies from the Standish Group shown in
Chapter 1.

You can use agile product development techniques in many industries besides
software development. If you’re creating a product and want early feedback
throughout the process, you can benefit from agile processes.

When you have a critical looming deadline, your instinct is to go agile. Formality
goes out of the window as you roll up your sleeves and focus on what has to get
done. You solve problems quickly, practically, and in descending order of neces-
sity, making sure you complete the most critical tasks.

More than going agile — it’s about being agile. When you become agile, you don’t
institute unreasonable deadlines to force greater focus. Instead, you realize that
people function well as practical problem solvers, even under stress. For example,
a popular team-building exercise titled the marshmallow challenge involves
groups of four people building the tallest free-standing structure possible out of
20 sticks of spaghetti, a yard of tape, and a yard of string, and then placing a
marshmallow on the top — in 18 minutes. See https://tomwujec.com for back-
ground information about the concept. On that site, you can also view the associ-
ated TED Talk by Tom Wujec.

Wujec points out that young children usually build taller and more interesting
structures than most adults because children build incrementally on a series of
successful structures in the time allotted. Adults spend a lot of time planning,
produce one final version, and then run out of time to correct any mistakes. The
youngsters provide a valuable lesson that big bang development — namely, exces-
sive up-front planning and then one shot at product creation — doesn’t work.
 Formality, excessive time detailing uninformed future steps, and a single plan are
often detriments to success.

The marshmallow challenge sets opening conditions that mimic those in real life.
You build a structure (which equates to developing a product) using fixed resources
(four people, spaghetti, and so on) and a fixed time (18 minutes). What you end up
with is anyone’s guess, but an underlying assumption in historical project man-
agement approaches is that you can determine the precise destination (the fea-
tures or requirements) in the beginning and then estimate the people, resources,
and time required.

CHAPTER 3 Why Being Agile Works Better 51

This assumption is upside down from how life really is. As you can see in
Figure 3-1, the theories of historical methods are the reverse of agile approaches.
We pretend that we live in the world on the left, but we actually live in the world
on the right.

In the historical approach, which locks the requirements and delivers the product
all in one go, the result is all or nothing. We either succeed completely or fail
absolutely. The stakes are high because everything hinges on work that happens
at the end (that is, putting the marshmallow on the top) of the final phase of the
cycle, which includes integration and customer testing.

In Figure 3-2, you can see how each phase of a waterfall project is dependent on
the previous one. Teams design and develop all features together, meaning you
don’t get the highest-priority feature until you’ve finished developing the lowest-
priority feature. The customer has to wait until the end of the project to get final
delivery of any element of the product.

In the testing phase of a waterfall project, the customer finally gets to start seeing
parts of the long-awaited product. By that time, the investment and effort have
been huge, and the risk of failure is high. Finding defects among all completed
product requirements is like looking for a weed in a cornfield.

Agile approaches turn the concept of how product development should be done
upside down. Using agile methods, you develop, test, and integrate small groups
of product requirements in short iterative cycles, known as iterations, or sprints, as
illustrated in Figure 3-3. Testing occurs during each iteration rather than at the
end of development. Development teams identify and remove defects, preventing
them from ever finding their way to the customer, just like a gardener can more
easily find a weed in a flowerpot than in a cornfield. They not only find and remove
the weeds, they prevent the weed seeds from germinating.

FIGURE 3-1:
A comparison of
historical project

management and
agile concepts.

52 PART 1 Understanding Agility

FIGURE 3-3:
Agile approaches
have an iterative

development
cycle.

FIGURE 3-2:
The waterfall

project cycle is a
linear

methodology.

CHAPTER 3 Why Being Agile Works Better 53

Product owner, scrum master, and sprint are terms from scrum, a popular agile frame-
work for organizing work and exposing progress. Scrum refers to a rugby huddle,
in which rugby players come together to gain possession of the ball. Scrum as an
approach, like rugby, encourages the team to work together closely toward a com-
mon goal and take responsibility for the result. (You find out more about scrum
and other agile techniques in Chapter 5.) We use scrum as an example to explain
many of the concepts in the rest of this chapter.

Moreover, with agile product development, the customers get to see their product
at the end of every short cycle. You can create the highest-priority features first,

WHERE THE WATERFALL FALLS SHORT
As we mention in Chapter 1, before 2008, waterfall was the most widely used traditional
project management methodology. The following list summarizes the major aspects of
the waterfall approach to project management:

• The team must know all requirements up front to estimate time, budgets, team
members, and resources. Knowing all the requirements at the project start means
you have a high investment in detailed requirements gathering before any develop-
ment begins.

• Estimation is complex and requires a high degree of competence and experience
and a lot of effort to complete.

• The customer and stakeholders may not be available to answer questions during
the development period, because they may assume that they provided all the infor-
mation needed during the requirements-gathering and design phases.

• The team needs to resist the addition of new requirements or document them as
change orders, which adds more work to the project and extends the schedule and
budget.

• The team must create and maintain volumes of process documentation to manage
and control the project.

• Although some testing can be done as you go, final testing can’t be completed until
the end of the project, when all functionality has been developed and integrated.

• Full and complete customer feedback is not possible until the end of the project,
when all functionality is complete.

• Funding is ongoing, but the value appears only at the end of the project, creating a
high level of risk.

• The project has to be fully complete for value to be achieved. If funding runs out
prior to the end of the project, the project delivers zero value.

54 PART 1 Understanding Agility

which gives you the opportunity to ensure maximum value early on, when less of
the customer’s money has been invested.

An agile approach to product development will reduce risk during every iteration.
In addition, if your product has market value, revenue can be coming in even dur-
ing development. Now you have a self-funding product!

How Agile Approaches Beat
Historical Approaches

Agile frameworks promise significant advantages over historical methods, includ-
ing greater flexibility and stability, less nonproductive work, faster delivery with
higher quality, improved development team performance, tighter control, and
faster failure detection. We describe all these results in this section.

However, these results can’t be achieved without a highly competent, enduring,
and functional development team. The development team is pivotal to the success
of the product. Agile methods emphasize the importance of the support provided
to the development team as well as the importance of team members’ actions and
interactions.

The first value in the Agile Manifesto is “Individuals and interactions over pro-
cesses and tools.” Nurturing the development team is central to agile product
development and the reason why you can have such success with agile approaches.

Scrum teams are centered on development teams (which includes feature cre-
ators, testers, designers, and anyone else who does the actual work of creating the
product), as well as the following two important team members, without which
the development team couldn’t function:

 » Product owner: The product owner is a team member who is an expert on the
product and the customer’s business needs. The product owner works with
the business community and prioritizes product requirements, and supports
the development team by being available to provide daily clarifications and
final acceptance to the development team. (Chapter 2 has more on the
product owner.)

 » Scrum master: The scrum master acts as a buffer between the development
team and distractions that might slow down the development effort. The
scrum master also provides expertise on agile processes and helps remove
obstacles that hinder the development team from making progress. They
facilitate consensus building and continuous team improvement.

CHAPTER 3 Why Being Agile Works Better 55

You can find complete descriptions of the product owner, the development team,
and the scrum master in Chapter 7. Later in this chapter, you see how the product
owner and scrum master’s highest priority is supporting and optimizing the
development team’s performance.

Greater flexibility and stability
By way of comparison, agile product development offers both greater flexibility
and greater stability than traditional projects. First, you find out how agile devel-
opment offers flexibility, and then we discuss stability.

A team, regardless of its project or product management approach, faces two sig-
nificant challenges at the beginning of product development:

 » The team has limited knowledge of the product end state.

 » The team cannot predict the future.

This limited knowledge of the product and of future business needs almost guar-
antees changes.

The fourth core value in the Agile Manifesto is “Responding to change over fol-
lowing a plan.” Agile frameworks are created with flexibility in mind.

With agile approaches, teams can adapt to new knowledge and new requirements
that emerge as development progresses. We provide many details about the agile
processes that enable flexibility throughout this book. Here’s a simple description
of some processes that help product development teams manage change:

 » At the start of product development, the product owner gathers high-level
product requirements from stakeholders and prioritizes them. The product
owner doesn’t need all the requirements broken down in detail up front; he or
she needs just enough to have a good understanding of what the product
must accomplish.

 » The development team and the product owner work together to break down
the initial highest-priority requirements into more detailed requirements. The
result is small chunks of valuable work that the development team can start
developing immediately.

 » You focus on the top priorities in each sprint regardless of how soon before
the sprint those priorities were set.

Iterations, or sprints are short — they last up to four weeks, and are often one
or two weeks. You can find details about sprints in Chapters 10–12.

56 PART 1 Understanding Agility

 » The development team works on groups of requirements within sprints and
learns more about the product with each successive sprint.

 » The development team plans one sprint at a time and drills further into
requirements at the beginning of each sprint. The development team
generally works only on the next highest-priority requirements.

 » Concentrating on one sprint at a time and on the highest-priority require-
ments allows the team to accommodate new high-priority requirements at
the beginning of each sprint.

 » When changes arise, the product owner updates a list of requirements that
remains to be dealt with in future sprints. The product owner reprioritizes the
list regularly based on changing market or business conditions.

 » The product owner can financially invest in high-priority features first and can
choose which features to fund throughout development.

 » The product owner and development team collect client feedback at the end
of each sprint and act on that feedback. Client feedback often leads to
changes to existing functionality or to new, valuable requirements. Feedback
can also lead to removing or reprioritizing requirements that are not really
necessary.

 » The product owner can stop development once he or she deems the product
has sufficient functionality to fulfill product goals. Agile product development
typically ends early, running out of value before it runs out of time or money.

Figure 3-4 illustrates how making changes with agile development can be more
stable than making changes in waterfall. Think of the two images in the figure as
steel bars. In the top image, the bar represents a two-year project. The bar’s
length makes it much easier to distort, bend, and break. Project changes can be
thought of in the same way — long projects are structurally vulnerable to
instability because the planning stage of a project is different than the execution,
when reality sets in, and there is no natural point of give in a long project.

FIGURE 3-4:
Stability in

flexibility with
agile product

development.

CHAPTER 3 Why Being Agile Works Better 57

Now look at the bottom image in Figure 3-4. The small steel bars represent a two-
week iteration. It is much easier for those small bars to be stable and unchanging
than it is for the larger bar. In the same manner, it is easier to have stability in
smaller increments with known flexibility points. Telling a business there can be
no changes for two weeks is much easier and more realistic than saying there can
be no changes for two years.

Agile product development is tactically flexible because it is strategically stable.
Agile approaches are great at accommodating change because the means for regu-
lar change are built into everyday processes. At the same time, iterations offer
distinct areas for stability. Teams accommodate changes to the product backlog
anytime but do not generally accommodate external changes to scope during the
sprint. The product backlog may be constantly changing, but, except in emergen-
cies, the sprint is generally stable.

At the beginning of the iteration, the development team plans the work it will
complete for that sprint. After the sprint begins, the development team works
only on the planned requirements. A couple of exceptions to this plan can occur —
if the development team finishes early, it can request more work; if an emergency
arises, the product owner can cancel the sprint. In general, however, the sprint is
a time of great stability for the development team.

This stability can lead to innovation. When development team members have
 stability — that is, they know what they will be working on in a set period of
time — they will think about their tasks consciously at work. They may also think
about tasks unconsciously away from work and tend to come up with solutions at
any given time.

Agile product development provides a constant cycle of development, feedback,
and change, allowing teams the flexibility to create products with only the right
features and the stability to be creative.

Reduced nonproductive tasks
At any point in your working day when you’re creating a product, you can work on
either developing the product or on the peripheral processes that are supposed to
manage and control the creation of the product. Clearly, there’s more value in the
first, which you should try to maximize, than in the second, which you want to
minimize.

To develop a product, you have to work on the solution. As obvious as this state-
ment sounds, it’s routinely neglected on waterfall projects. Programmers on some
software projects spend only 20 percent of their time generating functionality,
with the rest of the time in meetings, writing emails, or creating unnecessary
presentations and documentation.

58 PART 1 Understanding Agility

Product development can be an intense activity that requires sustained periods of
focus. Many developers can’t get enough development time during their normal
workday to keep up with the schedule of a project because they’re doing other
types of tasks. The following causal chain is the result:

Long workday = tired developers = unnecessary defects = more defect fixing =
delayed release = longer time to value

Don’t be fooled into thinking that your development team will work only one
weekend. If you work one weekend, you’ll probably work most weekends from
now on. Working overtime sets a false watermark. After you do it, people don’t
expect less moving forward; if anything, they’ll expect more.

To maximize productive work, the goal is to eliminate overtime and have develop-
ers creating functionality during the working day. To increase productive work,
you have to reduce unproductive tasks, period.

Meetings
Meetings can be a large waste of valuable time. On traditional projects, develop-
ment team members may find themselves in long meetings that provide little or
no benefit to the developers. The following agile approaches can help ensure that
development teams spend time only in productive, meaningful meetings:

 » Agile processes include only a few formal meetings. These meetings are
focused, with specific topics and limited time. With agile product develop-
ment, you generally don’t need to attend non-agile meetings.

 » Part of the scrum master’s job is to prevent disruptions to the development
team’s working time, including requests for non-agile meetings. When there’s
a demand to pull developers away from development work, the scrum master
asks “why” to understand the true need. The scrum master, working with the
product owner, then may figure out how to satisfy that need without disrupt-
ing the development team.

 » With agile product development, the current status is often visually available
to the entire organization, removing the need for status meetings. You can
find ways to streamline status reporting in Chapter 16.

Email
Email is not an efficient mode of communication to resolve issues. Product devel-
opment teams aim to use email sparingly, perhaps when information needs to be
sent out or a simple yes-or-no answer is required. Even then, better tools exist,
such as persistent chat tools in which the conversation taking place is the same
for all participants. The email process is asynchronous and slow: You send an

CHAPTER 3 Why Being Agile Works Better 59

email, wait for an answer, have another question, and send another email. This
process eats up time that could be spent more productively.

Instead of sending emails, teams use face-to-face discussions to resolve ques-
tions and issues on the spot.

Presentations
When preparing for a presentation of the functionality to the customer, product
development teams often use the following techniques:

 » Demonstrate, don’t present. In other words, show the customer what
you’ve created, rather than describing what you’ve created. Product develop-
ment teams always have a shippable increment of their product ready to
demonstrate, avoiding the temptation to report hypothetically on work
in progress.

Customers and stakeholders can provide even better feedback if the demon-
stration includes the opportunity for them to experience the product incre-
ment for themselves by putting their hands on the keyboard or product
themselves.

 » Show how the functionality delivers on the requirement and fulfills the
acceptance criteria. In other words, say, “This was the requirement. These
are the criteria needed to indicate that the feature was complete. Here is the
resulting functionality meeting those criteria.”

 » Avoid formal slide presentations and all the preparation they involve.
When you demonstrate the working functionality, it will speak for itself. Keep
demonstrations raw and real.

Process documentation
Documentation has been the burden of project managers and developers for a long
time. Product development teams can minimize documentation with the follow-
ing approaches:

 » Use iterative development. A lot of documentation is created to reference
decisions made months or years ago. Iterative development shortens the time
between decision and developed product from months or years to days. The
product and associated automated tests, rather than extensive paperwork,
document the decisions made.

 » Remember that one size doesn’t fit all. You don’t have to create the same
documents for every development effort. Choose what makes sense for your
product, stakeholders, and customers.

60 PART 1 Understanding Agility

 » Use informal, flexible documentation tools. Whiteboards, sticky notes,
charts, and other visual representations of the work plan are sufficient tools.

 » Include simple tools that provide adequate information for manage-
ment about product development progress. Don’t create special progress
reports, such as extensive status reports, for the sake of reporting. Product
development teams use visual charts, such as burndown charts, to readily
convey status while remembering that “working software (or product) is the
primary measure of progress” (Principle 7).

Higher quality, delivered faster
On traditional projects, the period from completion of requirements gathering to
the beginning of customer testing can be painfully long. During this time, the
customer is waiting to see some sort of result, and the development team is
wrapped up in developing. The project manager is making sure that the project
team is following the plan, keeping changes at bay, and updating everyone with
an interest in the outcome by providing frequent and detailed reports.

When testing starts, near the end of the project, defects can cause budget increases,
create schedule delays, and even kill a project. Testing is a project’s largest
unknown, and in traditional projects, it is an unknown carried until the end.

Agile product development is designed to deliver high-quality, shippable func-
tionality quickly. Agile product development achieves better quality and quick
delivery with the following:

 » The client reviews working functionality at the end of each sprint, and gives
immediate feedback to the team for inspection and adaptation as soon as the
next sprint.

 » Short development iterations (sprints) limit the number and complexity of
features in development at any given time, making the finished work easier to
test in each sprint. Only so much can be created in each sprint. Development
teams break down features too complex for one sprint.

 » The development team builds and tests daily and maintains a working
product throughout product development.

 » The product owner is involved throughout the day to answer questions and
clarify misunderstandings quickly.

 » The development team is empowered and motivated and has a reasonable
workday. Because the development team is not worn out, fewer defects
occur.

CHAPTER 3 Why Being Agile Works Better 61

 » Errors are detected quickly because developers test their work as it’s com-
pleted. Extensive automated testing happens frequently — with every code
check-in if necessary.

 » Modern software development tools allow many requirements to be written
as test scripts, without the need for programming, which makes automated
testing quicker.

Improved team performance
Central to agile product development is the experience of the team members.
Compared with traditional approaches such as waterfall, product development
teams get more environmental and organizational support, can spend more time
focusing on their work, and can contribute to the continuous improvement of the
process. To find out what these characteristics mean in practice, continue reading.

Support for the team
The development team’s ability to deliver potentially shippable functionality is
central to getting results with agile approaches and is achieved with the following
support mechanisms:

 » A common agile practice is collocation — keeping the development team,
scrum master, and product owner together in one place and physically close
to the customer. Collocation encourages collaboration and makes communi-
cation faster, clearer, and easier. You can get out of your seat, have a direct
conversation, and eliminate any vagueness or uncertainty immediately.

 » The product owner can respond to development team questions and
requests for clarification without delay, eliminating confusion and allowing
work to proceed smoothly.

 » The scrum master removes impediments and ensures that the development
team has everything it needs to focus and achieve maximum productivity.

Focus
Using agile processes, the development team can focus as much of its work time
as possible on the development of the product. The following approaches help
agile development teams focus:

 » Development team members are allocated 100 percent to one team goal,
eliminating the time and focus lost by switching context.

62 PART 1 Understanding Agility

 » Development team members know that their teammates will be fully
available.

 » Developers focus on small units of functionality that are as independent as
possible from other functionality. Every morning, the development team
knows what it means to be successful that day.

 » The scrum master has an explicit responsibility to help protect the develop-
ment team from organizational distractions.

 » The time the development team spends on creating and related productive
activities increases because nonproductive work decreases.

Continuous improvement
An agile process isn’t a mindless check-the-box approach. Different types of
products and different teams are able to adapt around their specific situation, as
you see in the discussion of sprint retrospectives in Chapter 12. Here are some
ways that teams can continuously improve:

 » Iterative development makes continuous improvement possible because each
new iteration involves a fresh start.

 » Because sprints happen over only a week or two, teams can incorporate
process changes quickly.

 » A review process called the retrospective takes place at the end of each
iteration and gives all team members a specific forum for identifying and
planning actions for improvements.

 » The entire scrum team — product owner, development team members, and
scrum master — reviews aspects of the work it feels might need
improvement.

 » The scrum team applies the lessons it learns from the retrospective to the
sprints that follow, which thus become more productive.

Tighter control
The work goes more quickly with agile development than under waterfall condi-
tions. Elevated productivity helps increase control with the following:

 » Agile processes provide a constant flow of information. Development teams
plan their work together every morning in daily scrum meetings, and they
update task status throughout each day.

CHAPTER 3 Why Being Agile Works Better 63

 » For every sprint, the customer has the opportunity to reprioritize product
requirements based on business needs.

 » Based on the working functionality you deliver at the end of each sprint, you
determine the work for the next sprint according to current knowledge and
updated priorities. You’re not locked in to priorities set days, weeks, months,
or years ago.

 » When the product owner sets priorities for the next sprint, this action has no
effect on the current sprint. With agile development, a change in require-
ments adds no administrative costs or time and doesn’t disrupt the current
work.

 » Agile techniques make product termination easier. At the end of each
iteration, you can determine whether the features of the product are now
adequate. Low-priority items may never need to be developed.

In waterfall, project metrics may be outdated by weeks, and demonstrable func-
tionality may be months away. In an agile context, metrics are fresh and relevant
every day, work completed is compiled and integrated daily, and working product
is demonstrated, at most, every few weeks. From the first sprint to the close of
development, every team member knows whether the team is delivering. Up-to-
the-minute knowledge and the ability to quickly prioritize make high levels of
control possible.

Faster and less costly failure
In a waterfall project, opportunities for failure detection are theoretical until close
to the end of the project schedule, when all the completed work comes together
and when most of the investment is gone. Waiting until the final weeks or days of
the project to find out that the product has serious issues is risky for all concerned.
Figure 3-5 compares the risk and investment profile for waterfall with that for
agile approaches.

Along with opportunities for tighter control, the agile framework offers you

 » Earlier and more frequent opportunities to detect failure

 » An assessment and action opportunity every few weeks

 » Reduction in failure costs

What sorts of failures have you seen on projects? Would agile approaches have
helped? You can find out more about risk on agile product development in
Chapter 17.

64 PART 1 Understanding Agility

Why People Like Being Agile
You’ve seen how an organization can benefit from agile product development with
faster delivery and lower costs. In the following sections, you find out how the
people involved can benefit as well, whether directly or indirectly.

Executives
Agile development provides two benefits that are especially attractive to execu-
tives: efficiency and a higher and quicker return on investment.

Efficiency
Agile practices allow for vastly increased efficiency in the development process in
the following ways:

 » Agile development teams are very productive. They organize the work
themselves, focus on development activities, and are protected from distrac-
tions by the product owner and scrum master.

 » Nonproductive efforts are minimized. An agile approach eliminates unfruitful
work; the focus is on development.

 » By using simple, timely, on-demand visual aids — such as graphs and
diagrams — to display what’s been done, what’s in progress, and what’s to
come, the progress of development is easier to understand at a glance.

FIGURE 3-5:
A risk and

investment
chart comparing

waterfall
and agile

methodologies.

CHAPTER 3 Why Being Agile Works Better 65

 » Through continuous testing, defects are detected and corrected early.

 » Development can be halted when it has enough functionality.

Increased ROI opportunity
ROI is significantly enhanced using agile approaches for the following reasons:

 » Functionality is delivered to the marketplace earlier. Features are fully
completed and then released in groups, rather than waiting until the end of all
development and releasing 100 percent of the features at once.

 » Product quality is higher. The scope of development is broken down into
manageable chunks that are tested and verified on an ongoing basis.

 » Revenue opportunity can be accelerated. Increments of the product are
released to the market earlier than with traditional project approaches.
Speed-to-market advantage is indefensible.

 » Products can self-fund. A release of functionality might generate revenue
while development of further features is ongoing.

Product development and customers
Customers like agile product development because they can accommodate chang-
ing requirements and generate higher-value products.

Improved adaptation to change
Changes to product requirements, priorities, timelines, and budgets can greatly
disrupt traditional projects. In contrast, agile processes handle changes in benefi-
cial ways. For example:

 » Agile development creates an opportunity for increased customer satisfaction
and return on investment by incorporating change even late in development,
nondisruptively.

 » Because the team members and the sprint length remain constant, product
changes pose fewer problems than with traditional approaches. Necessary
changes are slotted into the features list based on priority, pushing lower-
priority items down the list. Ultimately, the product owner chooses when
development will end, at the point where future investment won’t provide
enough value.

66 PART 1 Understanding Agility

 » Because the development team develops the highest-value items first and the
product owner controls the prioritization, the product owner can be confident
that business priorities are aligned with development activity.

Greater value
With iterative development, product features can be released as the development
team completes them. Iterative development and releases provide greater value in
the following ways:

 » Teams deliver highest-priority product features earlier.

 » Teams can deliver valuable products earlier.

 » Teams can adjust requirements based on market changes and customer
feedback.

Management
People in management tend to like agile development for the higher quality of the
product, the decreased waste of time and effort, and the emphasis on the value of
the product over checking off lists of features of dubious usefulness.

Higher quality
With software development, through such techniques as test-driven develop-
ment, continuous integration, and frequent customer feedback on working
 software, you can build higher quality into the product up front.

Perhaps you work on product development that does not include software.
 Technical practices exists for ensuring quality for any type of product. With non-
software development, what are ways you can think of to build in quality up front?

Less product and process waste
With agile development, wasted time and features are reduced through a number
of strategies, including the following:

 » Just-in-time (JIT) elaboration: Amplification of only the currently highest-
priority requirements means that time isn’t wasted working on details for
features that might never be developed.

CHAPTER 3 Why Being Agile Works Better 67

 » Customer and stakeholder participation: Customers and other stakehold-
ers can provide feedback in each sprint, and the development team incorpo-
rates that feedback into the product as soon as the next sprint. As
development and feedback continue, value to the customer increases.

 » A bias for face-to-face conversation: Faster, clearer communication saves
time and confusion.

 » Built-in exploitation of change: Only high-priority features and functions are
developed.

 » Emphasis on the evidence of working functionality: If a feature doesn’t
work or doesn’t work in a valuable way, it’s discovered early at a lower cost.

Emphasis on value
The agile principle of simplicity supports the elimination of processes and tools
that don’t support development directly and efficiently, and the exclusion of fea-
tures that add little tangible value. This principle applies to administration and
documentation as well as development in the following ways:

 » Fewer, shorter, more focused meetings

 » Reduction in pageantry

 » Barely sufficient documentation

 » Joint responsibility between customer and the team for the quality and value
of the product

Development teams
Agile approaches empower development teams to produce their best work under
reasonable conditions. Agile methods give development teams

 » A clear definition of success through joint sprint goal creation with the product
owner and identification of the acceptance criteria during requirements
development

 » The power and respect to organize development as they see fit

 » The customer feedback they need to provide value

 » The protection of a dedicated scrum master to remove impediments and
prevent disruptions

 » A humane, sustainable pace of work

68 PART 1 Understanding Agility

 » A culture of learning that supports both personal development and product
improvement

 » A structure that minimizes non-development time

Under the preceding conditions, the development team thrives and delivers results
faster and with higher quality.

On Broadway and in Hollywood, performers who are on stage and onscreen are
often referred to as “the talent.” They are the reason many entertainment
 customers come to a show, and the supporting writers, directors, and producers
ensure that they shine. In an agile environment, the development team is “the
talent.” When the talent is successful, everyone succeeds.

CHAPTER 4 Agility Is about Being Customer Focused 69

Chapter 4
Agility Is about Being
Customer Focused

Product development teams build and maintain products that customers
need. Understanding who your customer is and the problems he or she
needs solved makes product development valuable. In this chapter, you

learn how teams work to understand who their customer is, the problem the cus-
tomer needs solved, and the root causes rather than the symptoms.

Knowing Your Customers
"Who is my customer?" is a fundamental question everyone must ask as they
begin product development. Product development teams explore this question
frequently, using product and customer usage data to see trends and watch indus-
tries and markets closely. Not clearly understanding who your customer is makes
product development difficult and rudderless.

Customers range from external paying customers to internal users. Sometimes
the customer is even several layers away, spanning wholesalers, distributors, and
retailers. Product landscapes also change dramatically and are uncertain. Each
new generation of users from baby boomers to millennials brings a new set of
needs or considerations. Add to that cultures, races, and ethnicities; new or

IN THIS CHAPTER

 » Knowing your customers

 » Understanding your customer’s
problems

 » Preventing root causes rather than
treating symptoms

70 PART 1 Understanding Agility

changing technologies or inventions; new laws or regulations; and even results
from competitive benchmarking. Customers continually demand faster, better,
and cheaper. From cars that receive operating system updates every week to
wearables to home automation, customers expect more — and more often. Prod-
uct providers who can meet these demands remain relevant.

Knowing who your customer is will put your product development effort on the
right path. But how can you know if you’re on the right path? This uncertainty can
be unnerving.

Getting comfortable with uncertainty
Modern product development is fraught with uncertainty. In fact, it’s the one
aspect of product development that’s certain. Rarely can we develop the same
solution for our customer’s ever-changing problems. Product providers continu-
ally question, “Have we accurately identified our customer and are we addressing
the right problem?” Product development teams need to be comfortable with
uncertainty.

Certainty synonyms are predictability, sureness, assurance, and certitude —
aspects you would expect of a low-risk investment. Uncertainty is fraught with
vagueness, ambiguity, and insecurity — aspects of a high-risk investment. Prod-
uct development teams continually strive to address the highest risk and highest
value for their customers. Throughout their product development journey, cus-
tomers’ needs become more certain as the team learns, grow, and gains experi-
ence and opportunity.

With iterative product development, the team can present at every sprint a fully
functioning, working product increment — not a half-baked increment — and get
feedback. At each sprint, the team aligns the product closer and closer to what the
customer needs through a tight, consistent feedback loop. The team becomes
more and more certain that what they’re creating is what the customer wants. The
team validates assumptions along the way, thus reducing uncertainty.

Being comfortable with uncertainty is important because it changes the team’s
perspective. It enhances the team’s curiosity rather than giving them a false sense
of assurance. Innovation and better ideas result from a curious team, an attribute
shared by all famous inventors.

Uncertainty enables a team to channel its vagueness, ambiguity, and risk into a
fruitful learning experience with growth and opportunity. Uncertainty motivates
the team, which aligns with principle 5, “Build projects around motivated indi-
viduals. Give them the environment and support they need, and trust them to get
the job done.” Product development is risky business, in a good way.

CHAPTER 4 Agility Is about Being Customer Focused 71

Common methods for identifying
your customer
Although you can identify customers and their needs in many ways, we discuss
several popular methods used by product development teams. In the context of
agile development, we refer to customers as the end users and clients as the people
paying for the product or service.

Product owners and developers who are experts in techniques for better under-
standing their customer are valuable to their organizations and teams. Scrum
masters who can facilitate using these techniques are likewise valuable. Each
technique puts the team on the path towards certainty.

Product canvas
In Inspired: How to Create Tech Products Customers Love (Audible Studios), Marty
Cagan wrote, “discover a product that is valuable, usable and feasible.” What he
meant by this, as shown in Figure 4-1, is that successful product development hits
the sweet spot at the cross-section of

 » Valuable: Will customers buy it?

 » Usable: Do customers need it?

 » Feasible: Can we do it?

Many teams use a visualization technique, such as a product canvas, to start to
explore and understand the key factors, partners, unique value proposition,

FIGURE 4-1:
The sweet spot

where a product
is valuable,

feasible, and
usable.

72 PART 1 Understanding Agility

problems, and potential solutions that may contribute to finding the sweet spot,
where value, usability, and feasibility meet.

The product canvas is a collaborative tool that enables teams, in a brief amount of
time, to accomplish two tasks: One, start identifying desired goals or product out-
comes. Two, validate assumptions about the problem to solve for the customer
and ready the team for development. Product canvas exercises can inspire a clear
product vision. You learn more about product vision in Chapter 9.

Teams use the product canvas as a visualization activity to create a shared under-
standing of the customer and his or her needs. The tool serves as a starting point
for the team’s assumptions and enables them to dive deep in gathering new prod-
uct insights.

Product development teams create a shared understanding through visualization.
The most effective communication medium for them is face-to-face with a white-
board, flipchart, or other holistic surface. Why? Whiteboards allow people to not
only explain but also draw what they mean. Peter Lencioni, author of “The Five
Dysfunctions of a Team” said, “If you could get all the people in an organization
rowing in the same direction, you could dominate any industry, in any market,
against any competition, at any time.” A shared understanding helps teams row
in the same direction.

Many variations of canvases are available, such as a lean canvas or a business
opportunity canvas. They all serve a similar purpose of organizing ideas, chal-
lenging assumptions, and collaborating to find a strategic direction. Figure 4-2
demonstrates the product canvas we often use with agile product teams. The left
half addresses market and customer issues, while the right half addresses product
and business issues. The left half defines the customer segment, customer prob-
lems with alternatives, the value proposition, channels, and revenue projections.
The right half defines the solution, key stakeholders, success factors, resources,
partners, and costs. Both halves enable a team to do a more detailed evaluation of
their product.

Following are some categories a team might use in building its product canvas:

 » Customer segment: Describe the target customer segment that needs the
problem solved. For whom is the value being created?

 » Early adopter: Describe the initial target customer. Remember, your product
can’t be everything to everybody — at least not at first. What market segments
are opportunities for testing your product idea first?

 » Problem: Describe the primary problem experienced by the target customer
segment.

CHAPTER 4 Agility Is about Being Customer Focused 73

 » Existing alternatives: Describe available alternatives to your product.

 » Unique value proposition: Describe a single, clear, and compelling message
that states why or how your product is different and worth buying.

 » Channels: Describe the channels for acquiring, retaining, and increasing
customers. List ideas for creating awareness, interest, activation, and usage.
Describe what will entire customers to return and encourage referrals. List
upselling opportunities.

 » Solution: Describe the ways the target customer segment’s problems will be
solved.

 » Key stakeholders: List the people who are most important to your product.
This list may include people whose buy-in and support you need, executives,
and influencers. Who are the people you can trust to criticize your product
and tell you the truth?

 » Key success factors: Describe how success will be measured — measure
outcomes not outputs. Are there key metrics you can use to test your
hypotheses?

FIGURE 4-2:
The product

canvas.
Shardul Mehta

© Shardul Mehta 2015
http://streetsmartproductmanager.com

Product CanvasTM is adapted from The Business Model Canvas (http://www.businessmodelgeneration.com) and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of the license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain Veiw, Califoria, 94041, USA

74 PART 1 Understanding Agility

Using metrics allows product development teams to evaluate the success or
failure of each product release. Metrics help them see if they truly understand
and are solving their customer’s problems. Product development teams don’t
consider their work completely done until those objectives are met. The
product canvas and other tools outlined in this chapter can help identify these
business metrics early. Agile product development techniques increase the
likelihood that bad or wrong ideas are quickly discarded.

 » Key resources and partners: Describe the critical internal and external
people, equipment, or resources needed to deliver the solution to the
customer.

 » Revenue/business value: Describe the business value of delivering the
product, service, or capability. Consider what will drive revenue, save money,
increase customer satisfaction, differentiate you from your competition,
improve market positioning, and more.

 » Cost structure: Describe the important costs inherent in the product model.
Identify what will be most expensive, for example, resources, activities,
development, marketing, or support.

Using the foundation of a product canvas not only helps the team to better under-
stand the customer and desired outcomes but also enables the product owner to
build a concise yet strategic product vision statement with a supporting product
roadmap. The product vision statement and roadmap are discussed in Chapter 9.

Customer map
Other customer-focused mapping tools can be powerful visualization activities for
a team seeking to better understand its customers. We introduce two common
customer mapping tools: a journey map and an empathy map.

A journey map helps the team visualize the day-to-day experience a customer goes
through when accomplishing a goal or addressing a specific problem. Goals are
followed by actions in a timeline format, by calling out the user’s emotions or
thoughts. The journey map creates a narrative. The insights gained inform prod-
uct designs. Figure 4-3 outlines the flow of a journey map and the relationships
between the customer’s goals and his or her steps, insights, and emotions.

An empathy map (see Figure 4-4) helps the team think through the user’s emo-
tions and senses. It explores what the customer sees, hears, thinks, feels, and
does. It identifies pain the customer experiences and how the product can give the
customer the gains he or she seeks.

CHAPTER 4 Agility Is about Being Customer Focused 75

Teams build customer maps together, learning and digging deeper into their cus-
tomer’s needs, motivations, and challenges. They openly discuss their percep-
tions, observations, and insights to validate their understanding along the way.

Job-to-be-done lens
Jobs theory, developed by Clayton Christensen and the Harvard Business School in
response to his overwhelmingly popular theory on disruptive innovation, refers to
an approach used to discover functionally, socially, and emotionally why custom-
ers make the choices they do. According to the theory, products and services are
hired to help the customer make progress. They call the customer’s progress the
job-to-be-done, which when understood enables significant innovation. Beware
that if a product can be hired, it can also be fired.

FIGURE 4-3:
A customer

journey map.

FIGURE 4-4:
A customer

empathy map.

76 PART 1 Understanding Agility

The jobs-to-be-done approach adheres to four principles:

 » Job is shorthand for what an individual really seeks to accomplish in a
given circumstance. Product development teams need to understand the
experience the customer is trying to create, which is not a straight-
forward task.

 » The circumstances are more important than customer characteristics,
product attributes, new technologies, and trends. This principle speaks to
seeing the innovation through the lens of the customer’s circumstances.

 » Good innovations solve problems that formerly had only inadequate
solutions — or no solution. If customers see only two options, a third option

UNDERSTANDING THE JOB-TO-BE-DONE OF
A CONDOMINIUM
Clayton Christensen tells the story of a home builder in Detroit in 2006 who sold condo-
miniums to down-sizers — retirees looking to move out of the family home, divorced
parents, and single parents. In an effort to increase home sales, the builder considered
many options with a focus group. They considered adding a bay window, changing col-
ors, or making structural changes, and then evaluated to see whether their change
made a difference in sales. The results were negligible.

The builder decided to interview his previous customers to learn the reasons and time-
line that led to their condo purchase. Unfortunately, no patterns emerged except one:
Every buyer mentioned a concern about their dining room table. Confused at first, the
builder realized that while the table was somewhat inexpensive, well-used and possibly
dated, it was central to the family’s activities: homework, birthdays, holidays, and other
gatherings. The dining room table represented their family.

Buyers were hesitant about buying condos not because of the physical structure but
because of the anxiety associated with having to give up something that had profound
meaning. The job-to-be-done was to enable buyers to maintain family gatherings, mem-
ories, and traditions even when downsizing.

In response, condominiums were redesigned with a larger space for the dining room
table and each new buyer was given a two-year storage unit with a sorting area for their
belongings. Christensen cited that these changes allowed the builder to not only differ-
entiate himself from his competitors but also raise his price. Even better, in an industry
experiencing a severe economic decline at the time, his business grew by 25 percent.
Understanding the job-to-be-done made all the difference.

CHAPTER 4 Agility Is about Being Customer Focused 77

that addresses all the relevant criteria can help fickle observers become
customers.

 » Jobs are never simply about function — they have powerful social and
emotional dimensions. Understanding the social and emotional dimensions
of a customer’s choice makes all the difference in the customer’s purchasing
decisions.

Christensen shares how viewing products through the jobs-to-be-done lens sig-
nificantly increased sales of his sample populations. Specific examples he cites
include milk shakes, condominiums, and even Reese’s peanut butter cups.

Product development teams use the job-to-be-done theory throughout their
product development, particularly as they evaluate the timeline from when cus-
tomers identify a need to their purchase. Figure 4-5 shows an example job-to-be-
done timeline. Close interactions with stakeholders and customers help validate
their assumptions.

Product development teams can benefit by considering the job their product or
service must fulfill for the customers. Better understanding the job-to-be-done
requires customer interviews so you can truly understand their needs.

FIGURE 4-5:
The job-to-be-
done timeline.

78 PART 1 Understanding Agility

Customer interviews
What better way to understand a customer’s needs than to talk to the customer?
Teams interview customers because they value “customer collaboration over con-
tract negotiation” and “individuals and interactions over processes and tools.”
Customer interviews are critical for enabling progressive elaboration techniques
such as decomposition and story mapping. See Chapter 9 to learn about progres-
sive elaboration.

The key for performing a successful interview is to get customers to talk by allow-
ing them to tell stories about their problems and imagine possible solutions. You
escape from your perspective into the customer’s. Interviewees will discover
things they didn’t know and interviewers will discover whether they’re making
wrong assumptions. Consider the interview as an opportunity to validate the
team’s assumptions and to vet both good and bad ideas.

Table 4-1 outlines the types of questions interviewers should and shouldn’t ask.

The types of question on the left invite storytelling. They encourage the customer
to answer beyond any biases you may have. The examples on the right give sig-
nificant constraints to customers on how they can answer the question, and don’t
encourage much conversation or storytelling. Instead, get them talking.

TABLE 4-1	 Customer Interview Do’s and Don’ts
Do This Don’t Do This

Use open ended questions beginning with why, how, and
what. Follow up with more questions such as, “Tell me more.”

Use questions that invite storytelling.

Tell me about. . .

How do you know. . .?

Can you give me an example of. . .?

What do you wish you could do. . .?

What do you know about. . .?

How do you feel about. . .?

How would life be different with. . .?

When was the last time you. . .?

What happened when you. . .?

Ask about past behavior, rather than hypothetical/ideal

What do you mean by. . .?

Start with a pitch or description of your
product idea.

Multiple choice or one word/one phrase
responses.

Do you like. . .? Do you want. . .?

Would you use this?

What do you think of our product?

What requirement should we add?

How often do you. . .?

Would you ever use. . .?

Would you pay money for. . .?

How often would you. . .if you could. . .?

Take vague terms like “difficult,” “expen-
sive,” “complex” at face value.

CHAPTER 4 Agility Is about Being Customer Focused 79

Product discovery workshop
Product development teams use product discovery workshops to gather product ideas
and insights from stakeholders and scrum team members. These workshops have
many different formats and applications.

Workshops, if done correctly, allow creative juices to flow. What is key is creating
a safe environment where ideas can be shared openly. Timeboxes (setting a time
limit on the discussion) for topics are helpful, as well as plenty of Post-it Notes
and markers, and the freedom to diverge, converge, explore, and discover.

Some people, especially introverts, find that receiving prepared agendas before-
hand is helpful for getting their thoughts flowing. Agendas can also help everyone
to arrive prepared and ensure that the workshop objectives are accomplished. Be
careful to not use the agenda to provide excess structure, however. Lightweight
structure, particularly with workshops, can help the discussion go where it needs
to go.

The frequency and participants of the workshops depend on the team, the prod-
uct, and the problem to solve.

Figuring Out the Problem Your
Customer Needs to Solve

The solution to a customer’s problem may not be what you think it should be. It
may not even be what the customer thinks it should be at first. It may not be what
the customer tells you he or she wants. The customer paying you to develop the
product and end-users may even have conflicting views of what’s needed at first.
One of the most difficult things about product development is that customers
often don’t know what they want until they interact with it.

Clearly understanding who your customer is makes understanding their problems
much easier. Teams understand this and take the time to understand customer
problems and their root causes. Addressing symptoms can be costly. Charles Ket-
tering, owner of 186 patents, said, “A problem well-stated is half-solved.” Several
methods exist for digging deeper into customer problems and their root causes.

Using the scientific method
Central to agile product development is the scientific method. The scientific method,
which has characterized natural science since the seventeenth century, consists of
systematic observation, measurement, and experiment, and formulating, testing,

80 PART 1 Understanding Agility

and modifying hypotheses. Product development teams ask questions to form
hypotheses, test those hypotheses, and then evaluate the results, over and over
again.

Teams use the scientific method to move their understanding of customer needs
and problems from uncertainty to certain, as shown in Figure 4-6.

To use the scientific method, the team begins by making observations or asking
questions about a particular customer problem. The team forms a hypothesis
about that problem. Then it discusses possible solutions in the form of require-
ments to test the hypothesis. Each requirement identifies the desired outcomes to
be measured so the team can evaluate the results.

The team builds the product increment during the sprint and gathers feedback at
the sprint review. Feedback is prioritized against the backlog. Product owners
release the increment when they feel enough value is created and the requirement
is ready to be tested in the wild. The team then positions itself for capturing more
customer feedback. The cycle repeats as necessary. Every product backlog item
should achieve a desired outcome.

Teams use the scientific method not only for product development but also to
improve the development process during retrospectives. At each sprint retrospec-
tive, they form a new hypothesis for improving, test the hypothesis with an
experiment during the sprint, and then evaluate the results — another example of
how the scientific method is central to agility.

FIGURE 4-6:
The scientific

method.

THE SCIENTIFIC METHOD AND R&D
Research and development clients have a hypothesis based on a set of premises. Each
sprint empirically validates or invalidates that premise as they collect feedback from
subject matter experts who critique the empirical findings. If the validation is weak, the
scrum team iterates on that premise until it is defensible. If the validation is strong, the
team progresses to the next premise. At the end, the team writes a white paper or jour-
nal article saying “This hypothesis is either valid or invalid and here is how we empiri-
cally know.”

CHAPTER 4 Agility Is about Being Customer Focused 81

Failing early is a form of success
The mantra “fail early, fail often, but always fail forward” as stated by John C. Max-
well motivates teams to accelerate their learning through continuous and early
delivery of value. In other words, try a few inexpensive experiments and then eval-
uate the results before investing more. This allows the team to spend the least
amount of time and effort on solutions that may be thrown away. Understanding
the problems customers need solved can take a few attempts. Product development
teams embrace failure as learning, especially when they learn inexpensively.

It’s not a failure when you learn something after only a week’s worth of effort!

With agile approaches to product discovery, invalidating assumptions is as good
as validating assumptions. The goal is to learn early what does and doesn’t work
before a larger investment is made.

The term minimum viable product (MVP) is a concept introduced in lean startup by Eric
Ries to help teams learn through failure quickly and cheaply. The point is to quit
trying to create everything before you deliver and test anything. Product owners and
development teams look for the next minimum viable product increment needed to
test and validate whether their solution is viable. Agile Principle 10: “Simplicity —
the art of maximizing the amount of work not done — is essential.”

NORDSTROM INNOVATION LAB
Nordstrom used a team called Innovation Lab to experiment with various product ideas
in its stores. During the course of a week, the team would run a sprint to prove an idea
by creating a product based on rapid feedback loops directly with customers in the
store.

In one case, the team created an iPad app for using photos to compare sunglasses
while choosing sunglasses to purchase. Every time the development team implemented
a new requirement, it would give the app to a sales rep to use with a customer, and
then gather feedback right away about how the customer used it or liked it. The team
scrapped some requirements customers didn’t like and, based on feedback, created
requirements the team hadn’t thought of in its planning.

At the time, the customers and the staff liked the product. However, the rest of the story
is what’s interesting. The product is not used at Nordstrom’s today. Why? We don’t
know. Does that mean it was a failure? We don’t think so. If they wasted any time on
developing the product, it was only one week. They failed cheap, which freed their team
to work on the next, more valuable problem.

82 PART 1 Understanding Agility

Defining customer-focused business goals
Agile product development is purpose driven, that is; it always begins by clearly
defining and understanding the desired outcomes for the customer. Every release,
sprint, requirement, and task is planned with a specific outcome in mind. Estab-
lishing goals in customer terms enables a team to keep its focus on the customer,
maintain strategic stability, and reserve tactical flexibility to accomplish the
problem to be solved.

Product development teams achieve desired outcomes. They continually validate
that their ladder is up against the right wall. Creating more of a bad product faster
is not a good idea.

Several goal formats are available to help a team focus on the customer. The most
effective goal statements are simple, emotionally engaging, motivating, and
memorable. Product development teams discuss the goal every day during their
daily scrum.

US President John F. Kennedy communicated the following goal in 1961: “The US
should commit itself to achieving the goal, before this decade is out, of landing a
man on the Moon and returning him safely to the Earth.” The goal was brief,
emotionally engaging, motivating, and powerful! Obtaining this goal was the
desired outcome that drove product development to follow.

Product release goals begin with “Enable my customer to” Iteration or sprint
goals begin with “Demonstrate the ability to” Even at the individual require-
ment level (sometimes referred to as a user story), you describe the requirement
using goal statements because they are succinct, define the target audience, and
define what benefit will be received and why. Regardless of the specific pattern
used, it’s important to keep the desired outcomes for the customer front and cen-
ter. (Read Chapter 10 to learn more about release planning, sprint planning, and
user stories.)

In this way, everything a team does throughout the sprint benefits the customer
and solves his or her problem in some way. Each task is more meaningful, and
each roadblock must be overcome. High-performing teams use goals to accom-
plish business outcomes iteratively, step by step, learning by learning.

Goals should be SMART, or Specific, Measurable, Acceptable, Realistic, and Time-
bound, as attributed to Peter Drucker’s Management by Objectives in his 1954
book The Practice of Management.

CHAPTER 4 Agility Is about Being Customer Focused 83

Story mapping
Story mapping, made popular by Jeff Patton and Peter Economy in their book User
Story Mapping (O’Reilly Media, Inc.), is another visualization activity used by
product development teams. Similar to a journey map, a story map helps a team
gain a shared understanding of the process or journey users and customers need
their product to take as well as the various alternatives for iteratively improving
the experience. The story map is organized to clarify for everyone the minimum
viable product as well as a path for future releases. Teams can see a more holistic
view of how their ideas fit into the overall user experience.

For example, Figure 4-7 outlines how a user might submit a transaction dispute if
he or she were charged incorrectly while using a mobile banking application. The
sequence with the least amount of functionality to accomplish the desired out-
come is across the first row. Other alternatives for eventually improving the user’s
experience at each step are prioritized vertically.

By mapping and visualizing the process as a team, the individual requirements
make a lot more sense. The team can draft the product backlog together, creating
a cohesive team-defined solution based on the customer’s experience.

Liberating structures — simple rules to
unleash a culture of innovation
The last but certainly not least approach we discuss is liberating structures, which
are a set of microstructures compiled and shared by Keith McCandless and Henri
Lipmanowicz. Liberating structures (www.liberatingstructures.com) provide

FIGURE 4-7:
A user story map.

84 PART 1 Understanding Agility

alternative ways of structuring and facilitating collaboration. They enable libera-
tion of content and ideas through minimally structured interactions and are
designed to help people understand and solve complex problems.

Macrostructures refer to organizational policies and processes that constrain
microstructure activities. Conventional (non-liberating) microstructures include
activities such as traditional presentations, discussions, brainstorms, and
reporting.

A menu of dozens of liberating structures defines an invitation for participation,
how to arrange the physical space and materials needed, how participation is dis-
tributed, how groups are configured, and a sequence of steps and timeboxes. Each
liberating structure can be used for brainstorming, discussing, and discovering
solutions to complex and challenging problems.

An example of a liberating structure often used by product development teams is
1-2-4-All, which is designed to engage everyone in the workshop to simultane-
ously generate questions, ideas, and suggestions. The exercise begins with a one-
minute silent self-reflection on a shared challenge, framed as a question. Next,
pairs are formed and spend two minutes building on the ideas. Then groups of
four spend four minutes noting the differences and similarities and developing
new ideas. Lastly, each group conducts a five-minute presentation of one impor-
tant idea that stood out to them. A bell or timer helps everyone work within their
timebox. The cycle can be repeated, if needed. In a few minutes, the group is able
to generate more and better ideas harnessing the mind-power of their collective
group.

Liberating structures are perfect for the types of problems agile product develop-
ment teams are solving for customers every day.

Understanding Root Cause Analysis
Root cause analysis (RCA) is a systematic approach for identifying root causes of
problems or events as well as an approach for responding to them. It’s based on
the basic idea that effective management requires that you not just deal with
symptoms of problems but also find a way to prevent problems.

RCA is a critical aspect to consider when evaluating the problem your customer is
trying to solve. Like physicians, product development teams strive to address the
problem at the root rather than symptoms. When the root is addressed, or even
prevented, the symptoms disappear. Addressing the root cause can be more chal-
lenging but often yields a more elegant and simple solution.

CHAPTER 4 Agility Is about Being Customer Focused 85

Following are the typical steps teams follow as they perform root cause analysis:

1. Define the problem. Collaboratively create a problem statement.

2. Collect data. Assemble data to support the problem.

3. Identify possible causal factors. List factors that cause the problem from the
gathered data.

4. Identify the root causes. List the root causes.

5. Recommend and implement solutions. Form a hypothesis to test.

RCA is extremely useful not only to product owners and developers when solving
customer-focused problems, but also to scrum masters as they work to remove
impediments or teach the team to do so. Impediments need to be resolved at the
root so that they never raise their ugly head again. Scrum masters resolve impedi-
ments not only tactically (remove reactively) but also strategically (prevent
proactively).

At any time, product development teams may use several approaches to better
understand root causes of the problems they’re trying to solve. In this section, we
discuss three approaches:

 » The Pareto (80/20) rule: If 20 percent of root causes are addressed, they can
positively benefit the remaining 80 percent.

 » Five Why’s: A problem can be debated five generations or layers back to
discover the root cause.

 » Ishikawa (or Fishbone diagram): A problem can be evaluated across
multiple categories — typically people, process, tools, and culture — to
expose root causes.

Pareto rule
The Pareto rule, named after economist Vilfredo Pareto (1985), also known as the
80/20 rule, specifies that 80 percent of the effects come from 20 percent of the
causes. This rule is a reminder that the relationship between inputs and outputs is
not balanced.

Teams use the Pareto rule as part of root cause analysis as they gather data from
help desk incidents or customer complaints, for example. From the data, the team
is able to categorize 20 percent of the top failures as affecting 80 percent of the

86 PART 1 Understanding Agility

reported incidents. Consider a few other applications of the Pareto rule to product
development:

 » 80 percent of the complaints come from 20 percent of your customers.

 » 80 percent of the product’s functionality comes from 20 percent of the
developer’s effort.

 » 80 percent of profits come from 20 percent of product customers.

 » Of all the apps on a mobile phone, users frequently use about 20 percent.

 » Getting the 20 percent right yields a higher return and solves root causes,
reducing symptoms.

The Pareto rule is often used by product owners as they manage their product
backlog. According to the rule, 20 percent of the backlog will create 80 percent of
the value for the customer. Prioritize the top 20 percent first. Then reevaluate, but
be ready to move on to the next investment idea after the 20 percent is met. Agile
projects run out of value before they run out of time or money.

Five why’s
The five why’s, also known as the nine why’s in liberating structures, is a method
that uses a series of why questions to drill down into successive layers of a prob-
lem. The basic idea is that each time you ask why, the answer becomes the basis
of the next why. It’s a simple tool that is useful for less complex problems.

Mind maps, which start with a central problem statement, can be helpful for
guiding the group or team through this analysis. As the group reaches the fifth (or
ninth) why, you can be more certain that the group is nearing a root cause.

One application of this technique is to more deeply analyze the results of a Pareto
analysis. Here’s an example of how to use the five why’s with the same mobile
banking app we considered earlier in this chapter:

Problem: Customers complain about excessive overdraft fees.

Why 1: Why are customers complaining about excessive overdraft fees?

Answer 1: Customers are not notified that their account is overdrawn.

Why 2: Why are customers not notified about overdrafts?

Answer 2: An indicator or alert is not provided to the customer when an overdraft
exists.

CHAPTER 4 Agility Is about Being Customer Focused 87

Why 3: Why does the customer not see an indicator or receive an alert when an
overdraft exists?

Answer 3: Bank policy requires a physical letter be sent when an overdraft exists.

Why 4: Why does bank policy require a physical overdraft letter be sent to
customers?

Answer 4: The new account contract, signed by the customer, stipulates a physical
letter.

Why 5: Why does the new account contract stipulate overdraft letters will be
mailed?

Answer 5: The mobile app did not exist when the new account contracts were
created.

Of course, you may need to ask “Why?” more than five times to solve the problem.
The point is to peel away surface-level issues to get to the root cause. Five why’s
can be used whenever the team is debating a problem or needs to better under-
stand a problem with either the product or the development process.

Ishikawa (fishbone)
An Ishikawa diagram, or fishbone diagram, is a causal diagram created by Kaoru
Ishikawa in 1968 that shows the causes of a specific event. Ishikawa diagrams sort
possible causes into various categories that branch from the original problem, as
shown in Figure 4-8. Also called a cause-and-effect diagram, an Ishikawa dia-
gram may have multiple sub-causes branching off each identified category.

FIGURE 4-8:
The Ishikawa

diagram.

88 PART 1 Understanding Agility

To begin, teams align on a single problem statement. They choose wording that
everyone can agree to. Multiple iterations of the problem statement may be
required until everyone is comfortable.

After the problem statement is clear, the team chooses categories for the spine of
the fishbone. Categories can be whatever the team believes will be helpful, such as
analyzing the problem across people, process, culture, and tools. Other helpful
categories are materials, environment, management, product line, country, and
state.

Combining the Ishikawa diagram with a five why’s analysis can help trace each
fishbone to its root causes. Note that the analysis often results in the same root
causes mentioned multiple times throughout. This is a sure sign that you’re on
the right track to truly understanding the problem rather than a symptom.

In this chapter, we discussed how understanding customers and their problems
are central to agility. Forgetting them leads to waste and regret. Remembering
them leads to innovation and success. Although identifying customers and their
problems can be difficult to grasp, you’ve learned several techniques to guide your
team conversations to move your uncertain product iteratively closer towards
certainty.

With root causes understood, teams, like physicians, can address problems rather
than symptoms. Various agile frameworks are available for helping product devel-
opment teams ferret out root causes. Those frameworks are described in the next
chapter.

2Being Agile

IN THIS PART . . .

Understand what it means to be agile and how to put
agile practices into action.

Get an overview of the three most popular agile
approaches, and discover how to create the right
environment for both virtually distributed and physically
collocated space, communication, and tools to facilitate
agile interactions.

Examine the behavior shift in values, philosophy, roles,
and skills needed to operate in an agile team.

Discover the advantages of small, self-organizing,
self-managing, long-lived, and enduring “permanent”
teams.

CHAPTER 5 Agile Approaches 91

Chapter 5
Agile Approaches

In previous chapters, you read about the history of agile product management.
You may have even heard of common agile frameworks and techniques. Are you
wondering what agile frameworks, methods, and techniques actually look like?

In this chapter, you get an overview of three of the most common agile approaches
used today.

Diving under the Umbrella
of Agile Approaches

The Agile Manifesto and the agile principles on their own wouldn’t be enough to
launch you into agile product development, eager as you might be to do so. The
reason is that principles and practices are different. The approaches described in
this book, however, provide you with the necessary practices to be successful.

Agile is a descriptive term for a number of techniques and methods that have the
following similarities:

 » Demonstrating valuable and potentially shippable functionality in short
iterations called iterative development

 » Emphasis on simplicity, transparency, and situation-specific strategies

IN THIS CHAPTER

 » Applying agile practices

 » Understanding lean, scrum, and
extreme programming

 » Connecting agile techniques

92 PART 2 Being Agile

 » Cross-functional, self-organizing teams

 » Working functionality as the measure of progress

 » Responsiveness to changing requirements

Synonyms of the word agile — including resilient, flexible, nimble, adaptive,
lightweight, and responsive — give additional insights into what it means to be
agile.

Similarly, throughout this book, we reference agile teams. Agile teams, which
include scrum teams (scrum being the most popular agile framework), are teams
who adhere to the agile values and principles to become more resilient, flexible,
nimble, adaptive, lightweight, and responsive in meeting their customer’s needs.

Agile product development is an empirical approach. In other words, you do
something in practice and adjust your approach based on experience rather than
theory.

With regards to product development, an empirical approach is braced by the fol-
lowing pillars:

 » Unfettered transparency: Everyone involved in the process understands
and can contribute to the development of the process.

 » Frequent inspection: The inspector must inspect the product regularly and
possess the skills to identify variances from acceptance criteria.

 » Immediate adaptation: The development team must be able to adjust
quickly to minimize further product deviations.

A host of approaches have agile characteristics. Three, however, are commonly
used: lean product development, scrum, and extreme programming (XP). These
three approaches work perfectly together and share many common elements,
although they use different terminology or have a slightly different focus. Broadly,
lean and scrum focus on structure. Extreme programming does that, too, but is
more specific about development practices, focusing more on technical design,
coding, testing, and integration. (From an approach called extreme programming,
this type of focus is to be expected.)

Most organizations we work with that are using an agile approach for product
development are usually working in an environment that is lean, with constant
attention to limiting work in progress, wasteful practices, and process steps;
using scrum to organize their work and expose progress; and using extreme pro-
gramming practices to frontload quality. Each of these approaches is explained in
more detail later in this chapter.

CHAPTER 5 Agile Approaches 93

Like any systematic approach, agile techniques didn’t arise out of nothing. The
concepts have historical precedents, some of which have origins outside software
development, which isn’t surprising given that software development hasn’t been
around that long in the history of human events.

The basis for agile approaches is not the same as that of traditional project man-
agement methodologies such as waterfall, which was rooted in a defined control
method used for World War II materials procurement. Early computer hardware
product development pioneers used the waterfall process to manage the complex-
ity of the first computer systems, which were mostly hardware: 1,600 vacuum
tubes but only 30 or so lines of hand-coded software. (See Figure 5-1.) An inflex-
ible process is effective when the problems are simple and the marketplace is
static, but today’s product development environment is too complex for such an
outdated model.

Enter Dr. Winston Royce. In his article, “Managing the Development of Large
 Systems,” published in 1970, Dr. Royce codified the step-by-step software devel-
opment process known as waterfall. When you look at his original diagram in
Figure 5-2, you can see where that name came from.

Over time, however, the computer development situation reversed. Hardware
became repeatable through mass production, and software became the more
 complex and diverse aspect of a complete solution.

FIGURE 5-1:
Early hardware

and software.

94 PART 2 Being Agile

The irony here is that, even though the diagram implies that you complete tasks
step by step, Dr. Royce himself added the cautionary note that you need iteration.
Here’s how he stated it:

“If the computer program in question is being developed for the first time, arrange
matters so that the version being delivered to the customer for operational
deployment is actually the second version insofar as critical design/operations
areas are concerned.”

Royce even included the diagram shown in Figure 5-3 to illustrate that iteration.

Now, we’re not sure if the page with this diagram was stuck with chewing gum to
other pages, but the software development community by and large lost this part
of the story. Historically, product development in general has been constrained by
this linear and defined process control thinking. By embracing the idea that you
might not know everything when you first start developing a component and will
probably have to revisit your assumption of what is the right thing to ensure that
it becomes what your customer needs, you take the first step to becoming more
agile. Agile techniques might have come to prominence 40 years earlier if people
had taken Dr. Royce’s advice to heart!

This story is specific to technology product development, but iterative, empirical
process controls apply to non-software products as well.

FIGURE 5-2:
The origins of

waterfall.

CHAPTER 5 Agile Approaches 95

Reviewing the Big Three: Lean, Scrum,
and Extreme Programming

Now that you have a brief history of the waterfall approach to project manage-
ment, you’re ready to find out more about three popular agile approaches to prod-
uct development: lean, scrum, and extreme programming.

An overview of lean
Lean has its origins in manufacturing. Mass-production methods, which have
been around for more than 100 years, were designed to simplify assembly pro-
cesses (for example, putting together a Model-T Ford). These processes use com-
plex, expensive machinery and low-skilled workers to inexpensively churn out an
item of value. The idea is that if you keep the machines and people working and
stockpile inventory, you generate a lot of efficiency.

FIGURE 5-3:
Iteration in

waterfall.

96 PART 2 Being Agile

The simplicity is deceptive. Traditionally, mass production requires wasteful sup-
porting systems and large amounts of indirect labor to ensure that manufacturing
continues without pause. It generates a huge inventory of parts, extra workers,
extra space, and complex processes that don’t add direct value to the product.
Sound familiar?

Cutting the fat as lean emerges in manufacturing
In Japan in the 1940s, a small company called Toyota wanted to produce cars for
the Japanese market but couldn’t afford the huge investment that mass produc-
tion requires. The company studied supermarkets, noting how consumers buy just
what they need because they know there will always be a supply and how the
stores restock shelves only as they empty. From this observation, Toyota created
a just-in-time process that it could translate to the factory floor.

The result was a significant reduction in inventory of parts and finished goods and
a lower investment in machines, people, and space.

One big cost of the mass production processes at the time was that humans on the
production line were treated like machines: People had no autonomy and could
not solve problems, make choices, or improve processes. The work was boring and
set aside human potential. By contrast, the just-in-time process gives workers
the ability to make decisions about what is most important to do next, in real
time, on the factory floor. The workers take responsibility for the results. Toyota’s
success with just-in-time processes has helped change mass manufacturing
approaches globally.

Understanding lean and product development
The term lean was coined in the 1990s in The Machine That Changed the World: The
Story of Lean Production (Free Press) by James P. Womack, Daniel T. Jones, and Daniel
Roos. eBay was an early adopter of lean principles for product development. The
company led the way with an approach that responded daily to customers’ requests
for changes to the website, developing high-value features in a short time.

The focus of lean is maximizing business value and minimizing activities outside
product development. Mary and Tom Poppendieck discuss a group of lean
 principles on their blog and in their books on lean software development. Following
are the lean principles from their 2003 book, Lean Software Development (Addison-
Wesley Professional):

 » Eliminate waste. Doing anything that is beyond barely sufficient (process
steps, artifacts, meetings) slows down the flow of progress. Waste includes

CHAPTER 5 Agile Approaches 97

failing to learn from work, building the wrong thing, and thrashing (context
switching between tasks or objectives) — which results in only partially
creating lots of product features but not completely creating any.

 » Amplify learning. Learning drives predictability. Enable improvement
through a mindset of regular and disciplined transparency, inspection, and
adaptation. Encourage an organization-wide culture that allows failure for the
sake of learning from it.

 » Decide as late as possible. Allow for late adaptation. Don’t deliver late, but
leave your options open long enough to make decisions at the last responsi-
ble moment based on facts rather than uncertainty — when you know the
most. Learn from failure. Challenge standards. Use the scientific method by
experimenting with hypotheses to find solutions. We discuss the scientific
method in more detail in Chapter 4.

 » Deliver as fast as possible. Speed, cost, and quality are compatible. The
sooner you deliver, the sooner you receive feedback. Work on fewer things at
once, limiting work in progress and optimizing flow. Manage workflow, rather
than schedules. Use just-in-time planning to shorten development and release
cycles.

 » Empower the team. Working autonomously, mastering skills, and believing
in the purpose of work can motivate development teams. Managers do not
tell developers how to do their jobs but instead support them to self-organize
around the work to be done and remove their impediments. Make sure teams
and individuals have the environment and tools they need to do their job well.

 » Build in integrity (quality). Establish mechanisms to catch and correct
defects when they happen and before final verification. Quality is built in from
the beginning, not at the end. Break dependencies, so you can develop and
integrate functionality at any time without regressions.

 » See the whole. An entire system is only as strong as its weakest link.
Optimizing only one part will sub-optimize the whole system. Solve problems,
not just symptoms. Continually pay attention to bottlenecks throughout the
flow of work and remove them. Think long-term when creating solutions.

Understanding kanban
Beyond the lean principles, one of the most common lean approaches used by
product development teams is kanban, sometimes referred to as lean-kanban.
Adapted from the Toyota Production System approach, kanban is essentially a
method for removing waste to improve flow and throughput in a system.

98 PART 2 Being Agile

Kanban practices can be applied in almost any situation because they’re designed
to start with where you are — you don’t have to change anything about your
existing workflow to get started. Kanban practices include the following:

 » Visualize.

 » Limit work in progress (WIP).

 » Manage flow.

 » Make policies explicit.

 » Implement feedback loops.

 » Improve collaboratively, evolve experimentally (using models and the
scientific method).

The last three practices are commonly found in other agile frameworks, such as
scrum and XP (both discussed later in this chapter). The first three enhance effec-
tiveness for product development teams:

 » Visualize: Visualizing a team’s workflow is the first step in identifying potential
waste. Traditional bloated processes exist in many organizations but do not
reflect reality, even if visualized. As teams visualize the flow of their work (on a
whiteboard, on a wall, or in a drawing) and identify where productivity breaks
down, they can easily analyze the root cause and see how to remove the
constraint. And then do it again, and again, and again.

Kanban is a Japanese word that has various meanings depending on which
alphabet it’s written in, but in essence it means sign, large visual board, signal
cards, or visual signal. Hanging on the factory wall or the development
workspace wall, where everyone can see it, the kanban board shows the items
that teams need to produce next. Slotted into the board are cards represent-
ing units of production. As production progresses, the workers remove, add,
and move cards. As the cards move, they act as a signal to workers when work
or inventory replenishment is needed. Product development teams use
kanban boards or task boards to expose their progress and manage their flow
of work (described in more detail in Chapters 6 and 11).

 » Limit work in progress (WIP): When teams keep starting work but don’t
finish it, their work in progress continues to grow. Being agile is all about
getting done and receiving feedback on what has been done, so the goal is
to start things only when other things are completed. Working on multiple
things at once does not mean you complete them all faster — you actually
complete them more slowly than if you had worked on them one at a time.
When product development teams limit their work in progress, items get
completed faster, speeding the pace of completing each item in their queue.

CHAPTER 5 Agile Approaches 99

 » Manage flow: We’ve all experienced what happens on a busy street during
rush hour. When there are more cars than the lanes of traffic can handle, all
cars move more slowly. Everyone wants to get somewhere at the same time,
and so everyone has to wait longer to get there. To manage flow better, we
need to regulate the entry of vehicles into the flow of traffic or increase the
number of lanes of traffic where congestion is highest. Like cars in traffic,
product development work items move more slowly if development team
members try to take them all on at once. Working on one thing at a time and
identifying and removing constraints increases the flow of all items through
the system.

Measuring lead and cycle times helps teams monitor their management of
flow. A team determines the lead time by tracking the amount of time it takes
a request for functionality to go from acceptance in the queue to completion.
The team knows the cycle time by tracking the time from when work begins to
when it is completed. The team optimizes flow by identifying and removing
bottlenecks that keep its lead and cycle times from decreasing.

The foundational principles of kanban enable its effective use with other frame-
works such as scrum. These principles include the following:

 » Start with what you do now.

 » Agree to pursue evolutionary change.

 » Initially, respect existing roles, responsibilities, and job titles.

 » Encourage acts of leadership at all levels in your organization — from
individual contributors to senior management.

To support good product development practices, remember the following:

 » Don’t develop features that you’re unlikely to use.

 » Make the development team central to the product because doing so adds
the biggest value.

 » Have the customers prioritize features — they know what’s most important to
them. Tackle high-priority items first to deliver value.

 » Use tools that support great communication across all parties.

Today, lean principles continue to influence the development of agile techniques —
and to be influenced by them. Any approach should be agile and adapt over time.

100 PART 2 Being Agile

An overview of scrum
Scrum, the most popular agile framework according to Digital.ai’s 14th annual
State of Agile Report 2020, is an iterative approach that has at its core the sprint (the
scrum term for iteration). To support this process, scrum teams use specific roles,
artifacts, and events. To make sure that they meet the goals of each part of the
process, scrum teams use transparency, inspection, and adaptation throughout
development. The scrum approach is shown in Figure 5-4.

Going the distance with the sprint
Within each sprint, the development team develops and tests a functional part of
the product until the product owner accepts it, often daily, and the functionality
becomes a potentially shippable increment of the overall product demonstrated
for stakeholder feedback. Based on this feedback, the product owner determines
the next steps, whether to release the increment, and what adjustments to make
to the product backlog moving forward.

When one sprint finishes, another sprint starts. Releasing functionality to the
market often occurs at the end of multiple sprints, when the product owner deter-
mines that enough value exists. However, the product owner may decide to release
functionality after every sprint, or even as many times as needed during a sprint.

A core principle of the sprint is its cyclical nature: The sprint, as well as the pro-
cesses within it, repeats over and over, as shown in Figure 5-5.

You use the tenets of transparency, inspection, and adaptation on a daily basis as
part of scrum:

 » During a sprint, you make all progress transparent and conduct constant
inspections to assess progress toward the sprint goal, and consequentially,
toward the release goal.

FIGURE 5-4:
The scrum
approach.

CHAPTER 5 Agile Approaches 101

 » To organize the day, you hold a daily scrum meeting by coordinating what the
team will work on today. Essentially, the scrum team inspects its progress
toward the sprint goal and adjusts its plan to achieve the sprint goal based on
the reality of the day.

 » At the end of the sprint, you use a sprint review meeting and a sprint retrospec-
tive meeting to assess product improvements and team performance,
respectively, and plan necessary adaptations.

These inspections and adaptations may sound formal and process-laden, but they
aren’t. Use inspection and adaptation to solve issues and don’t overthink this pro-
cess. The problem you’re trying to solve today will be different than the problem
you’ll need to solve in the future anyway.

Understanding scrum roles, artifacts, and events
The scrum framework defines specific roles, artifacts, and events.

Scrum’s three roles — the people working on the product — are as follows:

 » Product owner: Represents and speaks for the business needs of
the product.

 » Development team: Performs the day-to-day technical implementation
work. The development team is dedicated to the product and each team

FIGURE 5-5:
Sprints are

recurring
processes.

102 PART 2 Being Agile

member is multi-skilled — that is, although team members may have certain
strengths, each member is capable of doing multiple product development
jobs.

 » Scrum master: Protects the team from organizational distractions, clears
roadblocks, ensures that scrum is played properly, and continuously improves
the team’s environment.

Additionally, scrum teams find that they’re more effective and efficient when they
work closely with two non-scrum–specific roles:

 » Stakeholders: Anyone who is affected by or has input on the product.
Although stakeholders are not official scrum roles, it is essential for scrum
teams and stakeholders to work closely together throughout development.

 » Agile mentor: Someone who has experience implementing agile principles,
practices, and techniques, and can share that experience with a team.
Sometimes called an agile coach. Often this person is external to the product’s
department or organization, so he or she can support the scrum team
objectively with an outsider’s point of view.

In the same way that scrum has specific roles, scrum also has three artifacts, which
are tangible deliverables that the scrum team makes transparent and uses to con-
tinuously inspect and adapt:

 » Product backlog: The full list of requirements that defines the product, often
documented in terms of business value from the perspective of the end user.
The product backlog is fluid throughout the product lifecycle. All scope items,
regardless of level of detail, are in the product backlog. The product owner
owns the product backlog, determining what goes in it and in what priority.

 » Sprint backlog: The list of requirements and tasks in a given sprint enabling
the team to achieve a specific sprint goal. The product owner and the
development team select the requirements for the sprint in sprint planning,
with the development team breaking down these requirements into tasks.
Unlike the product backlog, sprint backlog tasks can be changed only by the
development team as it sees fit to ensure that it achieves the sprint goal.

 » Product increment: The usable, potentially shippable functionality. Within
the context of a single sprint, the product increment includes functionality
from requirements that have been elaborated, designed, developed, tested,
integrated, documented, and approved to meet the business needs for which
it was intended. Whether the product is a website or a new house, the
product increment should be complete enough to demonstrate its working

CHAPTER 5 Agile Approaches 103

functionality. Product increments are released to the customer after enough
shippable functionality has been demonstrated to meet the customer’s
business goals. In other words, it may take more than one sprint to generate
enough valuable functionality to ship to the customer.

Finally, scrum also has five events:

 » Sprint: Scrum’s term for iteration. The sprint is the container for each of the
other scrum events, in which the scrum team creates potentially shippable
functionality. Sprints are short cycles, no longer than a month, typically
between one and two weeks, and in some cases as short as one day.
Consistent sprint length reduces variance; a scrum team can confidently
extrapolate what it can do in each sprint based on what it has accomplished in
previous sprints. Sprints give scrum teams the opportunity to make adjust-
ments for continuous improvement immediately, rather than at the end.

 » Sprint planning: Takes place at the start of each sprint. In sprint planning
meetings, scrum teams decide the business goal, scope, and supporting tasks
will be part of the sprint backlog.

 » Daily scrum: Takes place daily for no more than 15 minutes. During the daily
scrum, development team members inspect their progress and make
adjustments to their plan to achieve their sprint goal and coordinate removal
of impediments with the scrum master.

 » Sprint review: Takes place at the end of each sprint. In this meeting, the
development team demonstrates to the stakeholders and the entire organiza-
tion the accepted parts of the product the team completed during the sprint.
The key to the sprint review is collecting feedback from the stakeholders,
which informs the product owner how to update the product backlog and
consider the next sprint goal.

 » Sprint retrospective: Takes place at the end of each sprint. The sprint
retrospective is an internal team meeting in which the scrum team members
(product owner, development team, and scrum master) discuss what went
well during the sprint, what didn’t work well, and how they can make improve-
ments for the next sprint. This meeting is action-oriented and ends with
tangible improvement plans for the next sprint.

Scrum is simple: three roles, three artifacts, and five events. Each plays a part to
ensure that the scrum team has continuous transparency, inspection, and adapta-
tion throughout product development. As a framework, scrum accommodates
many other agile techniques, methods, and tools for executing the technical
aspects of building functionality.

104 PART 2 Being Agile

ESSENTIAL CREDENTIALS
If you are — or want to be — an agile practitioner, you may consider getting one or
more agile certifications. The certification training alone can provide valuable informa-
tion and the chance to practice agile processes — lessons you can use in your everyday
work. Many organizations want to hire people with proven agile knowledge, so certifica-
tion can also boost your career.

You can choose from a number of well-recognized, entry-level certifications, including
the following:

• Certified ScrumMaster (CSM): The Scrum Alliance, a professional organization
that promotes the understanding and use of scrum, offers a certification for scrum
masters. The CSM requires a two-day training class provided by a Certified Scrum
Trainer (CST) and completing a CSM evaluation. CSM training provides an overall
view of scrum and is a good starting point for people starting their agile journey.
See http://scrumalliance.org.

• Certified Scrum Product Owner (CSPO): The Scrum Alliance also provides a certi-
fication for product owners. Like the CSM, the CSPO requires two days of training
from a CST. CSPO training provides a deep dive into the product owner role. See
http://scrumalliance.org.

• Certified Scrum Developer (CSD): For development team members, the Scrum
Alliance offers the CSD as a technical-track certification, requiring five days of train-
ing from a CST and passing an exam on agile engineering techniques. CSM or CSPO
training can count toward two of the five days required for CSD; the remaining
three days are a technical skills course focusing on extreme programming practices
such as test-driven development, continuous integration, coding standards, simple
design, and refactoring. You learn more about these practices in the next section.
See http://scrumalliance.org for more about CSD certification.

• PMI Agile Certified Practitioner (PMI-ACP): The Project Management Institute
(PMI) is the largest professional organization for project managers in the world. In
2012, PMI introduced the PMI-ACP certification. The PMI-ACP requires training, gen-
eral project management experience, experience working on agile product devel-
opment, and passing an exam on your knowledge of agile fundamentals. See
http://pmi.org.

Advanced and professional certifications are also available for all three scrum roles
as well as agile leadership. See http://scrumalliance.org.

CHAPTER 5 Agile Approaches 105

An overview of extreme programming
One popular approach to product development, specific to software, is extreme
programming (XP). Extreme programming takes the best practices of software
development to an extreme level. Created in 1996 by Kent Beck, with the help of
Ward Cunningham and Ron Jeffries, the principles of XP were originally described
in Beck’s 1999 book, Extreme Programming Explained (Addison-Wesley Profes-
sional), which has since been updated. Ron Jeffries continues to update the XP
practices on his website at http://ronjeffries.com.

The focus of extreme programming is customer satisfaction. XP teams achieve
high customer satisfaction by working collaboratively with customers to develop
the functionality the customer needs, when the customer needs them. New
requests are part of the development team’s daily routine, and the team is empow-
ered to deal with these requests whenever they crop up. The team organizes itself
around any problem that arises and solves it as efficiently as possible.

As XP has grown as a practice, XP roles have blurred. A typical development effort
now consists of people in customer, management, technical, and product support
groups. Each person may play a different role at different times.

Discovering extreme programming principles
Basic approaches in extreme programming are based on agile principles. These
approaches are as follows:

 » Coding is the core activity. Software code not only delivers the solution but
can also be used to explore problems. For example, a programmer can
explain a problem using code.

 » XP teams do lots of testing during development, not at the end. If doing
just a little testing helps you identify some defects, a lot of testing will help you
find more. In fact, developers don’t start coding until they’ve worked out the
success criteria for the requirement and designed the unit tests. A defect is
not a failure of code; it’s a failure to define the right test.

 » Communication between customer and programmer is direct. The
programmer must understand the business requirement to design a technical
solution.

 » For complex systems, some level of overall design, beyond any specific
function, is necessary. With XP development, the overall design is consid-
ered during regular refactoring — namely, using the process of systematically
improving the code to enhance readability, reduce complexity, improve
maintainability, and ensure extensibility across the entire code base.

106 PART 2 Being Agile

You will find extreme programming combined with lean or scrum because the
process elements are so similar that they marry well.

Getting to know some extreme
programming practices
In XP, some practices are similar to other agile approaches, but others aren’t.
Table 5-1 lists key XP practices, most of which are commonsense practices and
many of which are reflected in agile principles.

TABLE 5-1 Key Practices of Extreme Programming
XP Practice Underpinning Assumption

Whole team The customer needs to be collocated (physically located together) with the development
team and be available. This accessibility enables the team to ask more minor questions,
quickly get answers, and ultimately deliver a product more aligned with customer
expectations.

Planning game All members of the team should participate in planning. No disconnect exists between
business and technical people.

Customer tests As part of presenting each desired feature, the XP customer defines one or more
automated acceptance tests to show that the feature is working. The system always
improves and never backslides. Automation is important because in the press for time,
manual tests get skipped.

Small releases Release value to the customer as often as possible. Some organizations release multiple
times daily. Avoid building up large stores of unreleased code requiring extensive risky
regression and integration efforts. Get feedback from your customer as early and as
often as possible.

Simple design The simpler the design, the lower the cost to change the software code.

Pair
programming

Two people work together on a programming task. One person is strategic (the driver)
and the other person is tactical (the navigator). They explain their approach to each
other. They take turns as driver and navigator. No piece of code is understood by only
one person. Defects can be more easily found and fixed before the code is merged and
integrated with the system.

Test-driven
development
(TDD)

Write automated customer acceptance and unit tests before you code anything. Write
a test, run it, and watch it fail. Then write just enough code to make the test pass,
refactoring until it does (red-green-clean). Test your success before you claim progress.

Design
improvement
(refactoring)

Continuously improve design by refactoring code — removing duplications and
inefficiencies within the code. A lean code base is simpler to maintain and operates
more efficiently.

CHAPTER 5 Agile Approaches 107

Extreme programming intentionally pushes the limits of development customs by
dramatically increasing the intensity of best-practice rituals, which has resulted
in a strong track record of XP improving development efficiency and success.

If you’re not doing software product development, you can probably replace XP
with a set of technical practices specific to your industry that would build in qual-
ity throughout product development.

Putting It All Together
All three agile approaches — lean, scrum, and extreme programming (XP) — have
common threads. The biggest thing these approaches have in common is adher-
ence to the Agile Manifesto and the 12 Agile Principles. Table 5-2 shows a few
more of the similarities among the three approaches.

XP Practice Underpinning Assumption

Continuous
integration

Team members should be working from the latest code. Integrate code components
across the development team as often as possible to identify issues and take corrective
action before problems build on each other. XP teams promote multiple builds each day!

Collective code
ownership

The entire team is responsible for the quality of code. Shared ownership and account-
ability bring about the best designs and highest quality. Any engineer can modify another
engineer’s code to enable progress to continue.

Coding standard Use coding standards to empower developers to make decisions and to maintain consis-
tency throughout the product; don’t constantly reinvent the basics of how to develop
products in your organization. Standard code identifiers and naming conventions are two
examples of coding standards.

Metaphor When describing how the system works, use an implied comparison, a simple story that
is easily understood (for instance, “the system is like cooking a meal”). This provides
additional context that the team can fall back on in all product discovery activities and
discussions.

Sustainable
pace

Overworked people are not effective. Too much work leads to mistakes, which leads to
more work, which leads to more mistakes. Avoid working more than 40 hours per week
for an extended period of time.

108 PART 2 Being Agile

In addition to more extensive agile frameworks and practices, scrum also accom-
modates a variety of accouterments that consistently increase success with agile
product development. Just like a physical home is framed to support the plumb-
ing, electrical, ventilation, and internal convenience features, scrum provides the
framework for many other agile tools and techniques to do the job well. Here is a
sampling, most of which you learn more about in the following chapters:

 » Product vision statement (an engaging elevator pitch — a clear inspirational
statement of direction for reaching the outer boundary of the product)

 » Product roadmap (a representation of the features required to achieve the
product vision)

 » Velocity (a tool— not a metric —for scrum teams to understand historical
workload for each sprint and empirically predict the delivery of functionality
long-term)

 » Release planning (establishing a specific mid-range goal, the trigger for
releasing functionality to the market)

 » User stories (structuring requirements from an end-user’s point of view to
clarify business value)

 » Relative estimation (using self-correcting relative complexity and effort rather
than inaccurate absolute measures, which give a false sense of precision)

 » Swarming (cross-functional teams working together on one requirement at a
time until completion to get the job done faster)

TABLE 5-2 Similarities between Lean, Scrum, and
Extreme Programming

Lean Scrum Extreme Programming

Engaging everyone Cross-functional development team Entire team

Collective ownership

Optimizing the whole Product increment Test-driven development

Continuous integration

Delivering fast Sprints of four weeks or less Small release

CHAPTER 6 Agile Environments in Action 109

Chapter 6
Agile Environments
in Action

Conjure up a mental picture of your current working environment. Perhaps
it looks like the following setup. The IT team sits in cube city in one depart-
mental area with the project manager somewhere within walking distance.

You work with an offshore development team eight time zones away. The business
customer is on the other side of the building. Your manager has a small office
tucked away somewhere. Conference rooms are usually fully booked, and even if
you were to get into one, someone would chase you out within the hour.

Or perhaps every one of the people we just listed is in a different physical location,
maybe even in a different time zone, with no common physical workspace, as
nearly all of us experienced in 2020 because of the stay-at-home orders related to
COVID-19.

In addition, your project documents are stored in folders on a shared drive. The
development team gets at least 100 emails a day. The project manager holds a
team meeting every week and, referring to the project plan, tells the developers
what to work on. The project manager also creates a weekly status report and
posts it on the shared drive. The product manager is usually too busy to talk to the
project manager to review progress but periodically sends emails with some new
thoughts about the product.

IN THIS CHAPTER

 » Creating your agile workspace

 » Rediscovering low-tech
communication and using the right
high-tech communication

 » Finding and using the tools you need

110 PART 2 Being Agile

Although this description might not describe your particular situation, you most
likely see parts of it in any given corporate setting. In contrast, scrum teams
develop in short, focused iterative cycles, relying on timely feedback from team
members and stakeholders. To operate and become more agile, your working
environment is going to have to change.

This chapter shows you how to create a working space that facilitates communi-
cation, one that will help you best become agile.

Creating the Physical Environment
Scrum teams flourish when scrum team members work closely together in an envi-
ronment that supports continuous and close collaboration. As noted in other chap-
ters, the development team members are central to success. Creating the right
environment for them to operate in goes a long way toward supporting their success.

Collocating the team
If at all possible, the scrum team needs to be collocated — that is, physically located
together. When a scrum team is collocated, the following practices are possible
and significantly increase efficiency and effectiveness:

 » Communicating face-to-face, taking advantage of the fullness of both verbal
and nonverbal communication

 » Standing up — rather than sitting — as a group for the daily scrum meeting
(to keep meetings brief and on topic)

 » Using simple, low-tech tools for communication

 » Getting real-time clarifications from scrum team members

 » Being aware of what others are working on

 » Asking for help with a task

 » Supporting others with their tasks

One of the benefits of collocation you don’t recognize until it’s gone is osmotic
communication. When people work in the same physical environment, they hear
what’s going on around them, even if they’re not paying close attention. They can
join a conversation happening within earshot, contributing something that might
have been missed. In addition, they can sense tension or relief as challenges are
addressed by other members of the team. Absorbing information that’s happening
around you contributes to better informed and empowered team members.

CHAPTER 6 Agile Environments in Action 111

All these practices uphold agile processes. When everyone resides in the same
area, it’s much easier for one person to lean over, ask a question, and get an
immediate answer. And when the question is complex, a face-to-face conversa-
tion, with all the synergy it creates, is much more effective and efficient than any
form of electronic communication. (See Principle 6.)

This improved communication effectiveness is due to communication fidelity — the
degree of accuracy between the meaning intended and the meaning interpreted.
Albert Mehrabian, PhD, a professor at UCLA, has shown that for complex, incongruent
communication, 55 percent of meaning is conveyed by physical body language,
38 percent is conveyed through cultural-specific voice tonality interpretation, and
only 7 percent is conveyed by words. Keep this in mind during your next conference
call to discuss the design nuances of a system that doesn’t yet exist.

Alistair Cockburn, one of the Agile Manifesto signatories, created the graph in
Figure 6-1. This graph shows the effectiveness of different forms of communica-
tion. Notice the difference in effectiveness between paper communication and two
people at a whiteboard — with collocation, you get the benefit of better
communication.

Face-to-face communication means we are physically face-to-face as we com-
municate. Although technology today supports bringing geographically dispersed
people together more effectively than ever before, technology cannot replicate the
social effects of people working in the same physical location on effective and
real-time collaboration.

Scrum teams are most effective when they are physically collocated. However,
that doesn’t mean agile frameworks such as scrum will not work for a dislocated
team. In fact, for the success of a dislocated team, a framework such as scrum is

FIGURE 6-1:
Better

communication
through

collocation.

112 PART 2 Being Agile

even more important due to its clarity of roles, transparency, and tight empirical
feedback loop. You learn more about scrum roles, artifacts, and events in
 Chapters 7, 10, 11, and 12.

In the following sections, we describe the ideal situation for enabling scrum team
communication, realizing that opportunities to achieve the desired benefits of
collocation exist even when collocation isn’t possible.

Setting up a dedicated area
If the scrum team members are in the same physical place, you want to create
as ideal a working environment for them as you can. The first step is to create a
dedicated area.

Set up an environment where the scrum team can work in close physical proximity.
If possible, the scrum team should have its own room, sometimes called a team
room or a scrum room. The scrum team members create the setup they need in this
room, putting whiteboards and bulletin boards on the walls and moving the
furniture. By arranging the space for productivity, it becomes part of how they
work. If a separate room isn’t possible, a pod — with workspaces around the edges
and a table or collaboration center in the middle — works well.

If you’re stuck in cube city and can’t tear down walls, be creative and ask for a
group of empty cubes and configure them in a way that works for your team, even
if that means removing panels. Create a space that you can treat as your team room.

The right space allows the scrum team to be fully immersed in solving problems
and crafting solutions. Visualizing ideas and work-in-progress brings about
shared understanding among the entire team. Unfettered access to other team
members is also key for effective and real-time collaboration. Create a space that
enables these things.

The situation you have may be far from perfect, but it’s worth the effort to see
how close you can get to the ideal. Before you start an agile transition in your
organization, ask management for the resources necessary to create optimal con-
ditions. Resources will vary, but at a minimum, they should include whiteboards,
bulletin boards, markers, pushpins, and sticky notes. You’ll be surprised at how
quickly the efficiency gains more than pay for the investment.

For example, when one client company allocated a dedicated team room and made
a $6,000 investment in multiple monitors for developers, they increased produc-
tivity and saved almost two months and $60,000 over the life of development.
That’s a pretty good return on a simple investment. We show you how to quantify
these savings in Chapter 15.

CHAPTER 6 Agile Environments in Action 113

Removing distractions
The development team needs to focus, focus, focus. Agile methods are designed to
create structure for highly productive work carried out in a specific way. The big-
gest threat to this productivity is distraction, such as . . . hold on, let me quickly
respond to this text message.

Okay, I’m back. The good news is that a scrum team has someone dedicated to
deflecting or eliminating distractions: the scrum master. Whether you’re going to
be taking on a scrum master role or some other role, you need to understand what
sorts of distractions can throw the development team off course and how to handle
them. Table 6-1 is a list of common distractions and do’s and don’ts for dealing
with distractions.

Distractions sap the development team’s focus, energy, and performance. The
scrum master needs strength and courage to manage and deflect interruptions.
Every distraction averted is a step toward success.

TABLE 6-1 Common Distractions
Distraction Do Don’t

Multiple
objectives

Do make sure that the development team is
dedicated 100 percent to a single product
objective at a time.

Don’t fragment the development team
between multiple objectives, operations
support, and special duties.

Multitasking Do keep the development team focused on a
single task, ideally developing one piece of
functionality at a time. A task board can help
keep track of the tasks in progress and quickly
identify whether someone is working on mul-
tiple tasks at once.

Don’t let the development team switch
between requirements. Switching tasks
creates a huge overhead (a minimum of
30 percent) in terms of lost productivity.

Over-
supervising

Do let development team members decide
among themselves how to accomplish the
work to be done after you collaborate on
 iteration goals; they can organize themselves.
Watch their productivity skyrocket.

Don’t interfere with the development team
or allow others to do so. The sprint review
meeting provides ample opportunity to
assess progress.

Outside
influences

Do redirect any distracters. If a new idea out-
side the sprint goal surfaces, challenge the
product owner to add the item to the product
backlog rather than put the accomplishment
of the sprint goal at risk.

Don’t mess with the development team
members and their work. They’re pursuing
the sprint goal, which is the top priority
during an active sprint. Assigning even a
seemingly quick task can throw off work
for the entire day.

Management Do shield the development team from direct
requests from management (unless manage-
ment wants to give team members a bonus
for their excellent performance).

Don’t allow management to negatively
affect the productivity of the development
team. Make interrupting the development
team the path of greatest resistance.

114 PART 2 Being Agile

Low-Tech Communicating
When a scrum team is collocated, the members can communicate in person with
ease and fluidity. Particularly when you begin your agile transition, you want to
keep the communication tools low-tech. Rely on face-to-face conversations and
good old-fashioned pen and paper. Low-tech promotes informality, allowing
scrum team members to feel that they can change work processes and be innova-
tive as they learn about the product.

The primary tool for communication should be face-to-face conversation. Tack-
ling problems in person is the best way to accelerate production:

 » Have short daily scrum meetings in person. Scrum teams stand through-
out a meeting to discourage it from running longer than 15 minutes. They
physically gather around the team’s task board.

 » Ask the product owner questions. Also, make sure the product owner is
involved in discussions about product features so he or she can provide clarity
when necessary. The conversation shouldn’t end when planning ends. In
other words, make sure the product owner is accessible at any time and as
close by as other team members. With movable desks and chairs, the scrum
team, which includes the product owner, can reconfigure their space for
better access to each other. Being mobile enables freer collaboration and
more freedom overall.

 » Speak with your team members. If you have questions about features,
progress, or integrating, talk, don’t email back and forth with team members.
The entire development team is responsible for creating the product, and
team members need to talk throughout the day.

As long as the scrum team is in close proximity, you can use physical and visual
approaches to keep everyone on the same page. The tools should enable everyone
to see

 » The goal of the sprint

 » The functionality necessary to achieve the sprint goal

 » What has been accomplished in the sprint

 » What’s coming next in the sprint

 » Who is working on which task

 » A clear definition of what it means to be shippable

 » What remains to be done

CHAPTER 6 Agile Environments in Action 115

Only a few tools are needed to support this low-tech communication:

 » A whiteboard or two (ideally, mobile — on wheels or lightweight). Nothing
beats a whiteboard for collaboration. The scrum team can use one for
brainstorming solutions or sharing ideas.

 » A huge supply of sticky notes in different colors (including poster-sized ones
for communicating critical information you want readily visible — such as
architecture, coding standards, and the team’s definition of done). See
Chapter 11 to learn more about making team artifacts more transparent.

Our personal favorite is giving each developer at least one tabletop dry erase/
sticky note easel pad combination, with a lightweight easel. These low-cost
tools are fantastic at facilitating communication.

 » Lots of colorful pens.

 » A sprint-specific task or kanban board (described in Chapters 5 and 11) for
tracking progress tactilely.

If you decide to have a sprint-specific kanban board, use sticky notes to represent
units of work (features broken down into tasks). For your work plan, you can place
sticky notes on a large surface (a wall or your second whiteboard), or you can use
a kanban board with cards. You can customize a kanban board in many ways, such
as using different-colored sticky notes for different types of tasks, red flag stick-
ers for features that have an impediment, and team member stickers to easily see
who is working on which task.

An information radiator is a tool that physically displays information to the scrum
team and anyone else in the scrum team’s work area. Information radiators
include kanban boards, whiteboards, bulletin boards, burndown charts, which show
the iteration’s status, and any other sign with details about the product develop-
ment or the scrum team.

Basically, you move sticky notes or cards around the board to show the status (see
Figure 6-2). Everyone knows how to read the board and how to act on what it
shows. In Chapter 11, you find out the details of what to put on the boards.

Whatever tools you use, avoid spending time making things look perfectly neat
and pretty. Formality in layout and presentation (what you might call pageantry)
can give an impression that the work is tidy and elegant. However, the work is
what matters, so focus your energy on activities that support the work. Pageantry
is the enemy of agility.

116 PART 2 Being Agile

High-Tech Communicating
Although collocation almost universally improves effectiveness, many scrum
teams can’t be collocated. Some development efforts have teammates scattered
across multiple offices; others have off-shore development teams around the
world. If you have multiple, geographically scattered scrum teams, try first to
reallocate existing talent to form scrum teams collocated within each geographic
location. If this move isn’t possible, don’t give up on an agile transition. Instead,
simulate collocation as much as possible.

When scrum team members work in different places, you have to make a greater
effort to set up an environment that creates a sense of connectedness. To span
distance and time zones, you need more sophisticated communication mecha-
nisms. Although high-tech tools are available to simulate a collocated environ-
ment, everyone’s contributions are required to be effective. If one team member
is remote, everyone on the team may need to be on camera to help the remote
team member participate and be engaged.

FIGURE 6-2:
A scrum task

board on a wall
or whiteboard.

CHAPTER 6 Agile Environments in Action 117

When determining which types of high-tech communication tools to support,
don’t choose tools that degrade direct and real-time conversation or introduce
unnecessary complexity:

 » Videoconferencing: Videoconferencing tools, such Zoom, Teams, and
Hangouts, can create a sense of being together. If you have to communicate
remotely, at the very least make sure you can see and hear each other clearly.
Body language provides the majority of the message.

Decisions aren’t made during meetings — they’re communicated in meetings.
Decisions are made in less formal settings, such as during a hallway conversa-
tion, over lunch, at the water cooler, or in an impromptu discussion in some-
one’s office. Unless you’re face-to-face, replicating these types of interactions
is difficult. The closest you might get is using something like a telepresence
robot (a remote-controlled stand on wheels with a tablet on top that displays
the remote person’s face). The robot can move around an office space so that
the single remote person can have hallway and water cooler conversations,
almost as if he or she were physically there. Probably not a realistic option, but
it shows that you can’t beat face-to-face interactions.

 » Persistent chat: Although instant messaging doesn’t convey nonverbal
communication, it is real time, accessible, and easy to use. Current examples
include Slack, HipChat, and Teams. Several people can also share a session
and share files. Persistent chat can be useful for conveying information but
not for resolving issues. Have face-to-face conversations for resolving issues.

 » Web-based desktop sharing: Especially for the development team, sharing
your desktop allows you to visually highlight issues and updates in real time.
Seeing the problem is always better than just talking about it hypothetically
over the phone. Most videoconferencing tools include this capability.

DON’T REINVENT THE WHEEL!
In the past, manufacturing processes often involved partially completed items being
shipped to another location for completion. In these situations, the kanban board on a
factory wall in the first location needed to be seen by shop floor management at the
second location. Electronic kanban board software was developed to resolve this prob-
lem, but the software display looked like a literal kanban board on the wall and was
used in the same way. If the software tool had required filtering or scrolling to see all
information on the kanban board, it would have been a significant downgrade for the
teams, because what made their physical kanban board so effective was being able to
see the board updated real-time in its entirety.

118 PART 2 Being Agile

 » Collaboration tools: These tools allow you to do everything from sharing
simple documentation so that everyone has the latest information to using a
virtual whiteboard for brainstorming. Some examples include tools such as
Google Drive, Miro, Mural, and Jamboard.

Technology is constantly evolving. We can’t wait to see what tools are available by
the time we release the next edition of this book.

Using online collaboration tools (such as those just listed) allows you to get out of
the status-reporting business and focus your efforts on doing the real work of
creating value for your customers. Use these tools to make the artifacts you’re
already using (such as your sprint backlog) available for stakeholders to peruse on
demand. When managers request status updates, you can simply direct them to
the collaboration site to pull the information they need. By updating these docu-
ments daily, you provide managers with better information than they would have
with formalized status reporting procedures under a traditional project manage-
ment cycle. Avoid creating separate status reports for management; these reports
duplicate information in the sprint burndowns and don’t support production.

When you have a collaboration site with shared documentation, don’t assume that
everyone automatically understands everything in the documentation. Use a col-
laboration site to make sure everything is published, accessible, and transparent,
but don’t let it give your team a false sense of shared understanding that comes
from conversations.

Choosing Tools
As noted throughout the chapter, low-tech tools are best suited for agile develop-
ment, especially initially, while the scrum team becomes accustomed to a more
agile way of working and collaborating. Our advice on choosing a tool is less about
which specific tool is best and more about whether the tool enables or impedes
delivering value to your customer.

We like to start our teams off with low-fidelity tools such as whiteboards, flip-
charts, sticky notes, and markers. Later, if they feel they need to invest in more
sophisticated technology, we encourage them to find a tool that supports the way
they’ve found works best for them, rather than find a new tool that dictates how
they do their work.

In this section, we describe a few points to consider when choosing agile tools: the
purpose of the tool and organizational and compatibility constraints.

CHAPTER 6 Agile Environments in Action 119

The purpose of the tool
When choosing tools, the primary question you need to ask is, “What is the pur-
pose of the tool?” Tools should solve a specific problem and support agile pro-
cesses, the focus of which is pushing forward with the work.

Above all, don’t choose anything more complicated than you need. Some tools are
sophisticated and take time to learn before you can use them to be productive. If
you’re working with a collocated scrum team, the training and adoption of agile
practices can be enough of a challenge without adding a suite of complicated tools
to the mix. If you’re working with a dislocated scrum team, introducing new tools
can be even more difficult.

Good litmus tests for tools include:

 » As a development team member, can I update my task status in a minute or
less per day?

 » Does the tool help us do our work, or has administering it become our work?

 » Is the tool impeding or improving transparency?

 » Does it promote or hinder important face-to-face conversations?

 » Does the cost of the tool’s administration justify the need?

 » Does the tool enable leadership interaction consistent with agile values and
principles?

You can find a lot of agile-centric websites, software, and other tools on the
 market. Many are useful, but you shouldn’t invest in expensive agile tools in your
early days of implementing agile. This investment is unnecessary and adds
another level of complexity to adoption. As you go through the first few iterations
and modify your approach, the scrum team will start identifying procedures that
can be improved or need to change. One of these improvements might be the need
for additional tools or replacement tools. When a need emerges naturally, from
the scrum team, finding organizational support for purchasing the necessary
tools is often easier because the need can be tied to a product issue.

Tools that encourage the success
of forced team dislocation
During the COVID-19 pandemic of 2020, governments worldwide issued stay-at-
home orders that forced a significant majority of people throughout the world to
work remotely — dislocated — for months. Countless organizations and industries
pivoted product delivery, collaboration, and even business models. Disruption
spanned almost every industry.

120 PART 2 Being Agile

Our business, Platinum Edge, was no exception. Before the pandemic, the scrum
certification programs we delivered, such as Certified ScrumMaster (CSM) and
Certified Scrum Product Owner (CSPO), were required by Scrum Alliance to be
taught only in-person, physically in a classroom setting. This requirement was
temporarily lifted, enabling us to deliver much needed training and experience to
people live and online. The experience was powered by digital tools that brought
students and our Certified Scrum Trainers together for a valuable learning
experience.

We quickly adapted to this challenge and found ways to enable effective collabora-
tion and learning in a virtual environment. We used videoconferencing with
breakout rooms for small-group collaboration. Figure 6-3 shows a student’s
computer screen of the virtual classroom setting.

We also shared visual content (prepared slides as well as real-time drawing) to
explain concepts, and enabled small groups to practice and apply concepts on a
virtual working canvas that simulated many of the tools mentioned in this chapter
(see Figure 6-4). Virtual flipcharts, whiteboards, and sticky notes provided a
near-tactile experience of moving, removing, and creating items to share.

The experience wasn’t the same as being physically face-to-face, and given the
choice, we and our students would choose in-person interactivity. But it was suf-
ficient for effective learning, “better than expected” to quote quite a few
students.

FIGURE 6-3:
Virtual classroom

setting.

CHAPTER 6 Agile Environments in Action 121

Using these tools, the students practiced all the same activities and experienced
working as a scrum team just as they did in the real world. As a side benefit, the
students were able to retain the virtual board after the class for their continued
collaboration.

Although collocated teams build better products faster, many students were able
to successfully navigate their forced virtual working conditions by using high-
tech tools. Other organizations who invested in tools to help their employees work
virtually continued operations even during a worldwide pandemic.

Organizational and compatibility
constraints
The tools you choose must operate in your organization. Unless you’re using
solely non-electronic tools, you’ll likely have to take into account organizational
policies with respect to hardware, software, and services as well as cloud comput-
ing, security, and telephony systems.

The key to creating an agile environment for scrum teams is to do so at the stra-
tegic organizational level. Scrum teams drive agile products, so enlist your orga-
nization’s leadership early to provide tools that will empower your teams to
succeed.

FIGURE 6-4:
Virtual

collaboration
board.

CHAPTER 7 Agile Behaviors in Action 123

Chapter 7
Agile Behaviors in Action

In this chapter, you look at the behavioral dynamics that need to shift for your
organization to benefit from the performance advantages that agile techniques
enable. You find out about the different roles on a product development team and

see how you can change a team’s values and philosophy about product develop-
ment. Finally, we discuss some ways for a team to hone key skills for agile success.

Establishing Agile Roles
In Chapter 5, we describe scrum, the most popular agile framework in use today.
The scrum framework defines common agile roles in an especially succinct
 manner. We use scrum terms to describe agile roles throughout this book. These
roles are

 » Product owner

 » Development team member

 » Scrum master

The product owner, development team, and scrum master together make up the
scrum team. Each role is a peer to the others — no one is the boss of anyone else
on the team.

IN THIS CHAPTER

 » Clarifying agile roles

 » Embracing agile values in your
organization

 » Transforming your team’s philosophy

 » Sharpening important skills

124 PART 2 Being Agile

The following roles are not part of the scrum framework but are still critically
important to agile product development:

 » Stakeholders

 » Agile mentor

The scrum team together with the stakeholders make up the product team. At the
center of it all is the development team. The product owner and scrum master fulfill
roles that ensure the development team’s success. Figure 7-1 shows how these
roles and teams fit together. This section discusses these roles in detail.

Product owner
The product owner, sometimes called the customer representative in non-scrum
environments, is responsible for bridging the gaps between the customer, busi-
ness stakeholders, and the development team. The product owner is an expert on
the product and the customer’s needs and priorities. The product owner, who is a
peer member of the scrum team, shields the development team from business
distractions (competing priorities), works with the development team daily to
help clarify requirements, and accepts completed work throughout the sprint in
preparation for the sprint review.

Product owners make the decisions about what the product does and does not
include. Add to that the responsibility of deciding what to release to the market
and when to do it, and you see that you need a smart and savvy person to fill this
role.

FIGURE 7-1:
The product
team, scrum

team, and
development

team.

CHAPTER 7 Agile Behaviors in Action 125

With agile product development, the product owner will

 » Develop strategy and direction for the product and set long- and short-
term goals.

 » Maximize the value of the product resulting from the work of the develop-
ment team.

 » Provide or have access to product expertise.

 » Understand and facilitate discussions about the customer’s and other
business stakeholders’ needs with the development team.

 » Gather, prioritize, and manage product requirements.

 » Take responsibility for the product’s budget and profitability.

 » Decide when to release completed functionality.

 » Work with the development team on a daily basis to answer questions and
make decisions.

 » Accept or reject completed work — as it’s completed — during the sprint.

 » Present the scrum team’s accomplishments at the end of each sprint, before
the development team demonstrates these accomplishments.

What makes a good product owner? Decisiveness. Good product owners under-
stand the customer thoroughly and are empowered by the organization to make
difficult business decisions every day. Although able to gather requirements from
stakeholders, product owners are knowledgeable about the product in their own
right. They can prioritize with confidence.

Good product owners interact well with the business stakeholder community, the
development team, and the scrum master. They are pragmatic and able to make
trade-offs based on reality. They are accessible to the development team and also
ask for what they need. They are patient, especially with questions from the devel-
opment team.

Figure 7-2 shows how a product owner works with stakeholders, customers or
users, and their scrum team. These relationships are critical for communicating
across the organization and for receiving product feedback.

Table 7-1 outlines the responsibilities and matching characteristics of a product
owner.

126 PART 2 Being Agile

FIGURE 7-2:
Product owner

communication
cycle.

TABLE 7-1 Characteristics of a Good Product Owner
Responsibility A Good Product Owner . . .

Supplies product strategy and
direction

Envisions the completed product

Firmly understands company strategy

Provides product expertise Has worked with similar products in the past

Understands the needs of the people who will use the product

Understands customer and other
stakeholder needs

Understands relevant business processes

Creates a solid customer input and feedback channel

Works well with business stakeholders

Manages and prioritizes product
requirements

Is decisive

Focuses on effectiveness

Remains flexible

Turns stakeholder feedback into valuable, customer-focused
functionality

Is practical about prioritizing financially valuable features, high-risk fea-
tures, and strategic system improvements

Shields the development team from business distractions (competing
stakeholder requests) and has the courage to say “no”

CHAPTER 7 Agile Behaviors in Action 127

The product owner takes on a great deal of business-related responsibility during
development. Although the sponsor funds and owns the budget, the product
owner manages how the budget is spent.

Product discovery
Product discovery is a key responsibility of product owners, who are often found
in the field performing customer interviews, striving to better understand chal-
lenges and problems. They meet with stakeholders and host workshops to gather
ideas for improving ROI and product value. They discover what the product needs
to become.

Product discovery is not a relabeling of a waterfall’s big, up-front planning phase.
Product discovery is ongoing, through continuous inspection and adaptation of
the customer’s needs.

Gathering data is another activity performed by product owners. They watch
product usage trends, looking for problematic areas. They dive into customer
service issues to understand patterns and opportunities for improving the
customer’s experience. With the help of talented experts in user interface (UI),
user experience (UX), engineering, and other subject matter, they continually look
for opportunities to improve product design. See Chapter 11 to learn other product
discovery activities performed by a product owner.

Responsibility A Good Product Owner . . .

Is responsible for budget and
profitability

Understands which product features can deliver the best return on
investment

Manages budgets effectively

Decides on release dates Understands business needs regarding timelines

Works with development team Is accessible for daily clarification of requirements

Works with the development team to understand capabilities and tech-
nical risks

Collaborates well with developers

Adeptly describes product features

Accepts or rejects work Understands acceptance criteria of requirements and ensures that
completed functionality work correctly

Presents completed work at the
end of each sprint

Clearly introduces the accomplishments of the sprint before the devel-
opment team demonstrates the sprint’s working functionality

128 PART 2 Being Agile

Product ownership is a full-time, fully dedicated role because they not only per-
form product discovery but also enable product development.

Product development
As the product is developed, the product owner is key for helping the team achieve
sprint and release goals. Throughout development, many questions will arise
needing clarification. The product owner attempts to answer these questions.

They do the necessary preparations before the release and sprint planning, prod-
uct backlog refinement activities, and sprint reviews and retrospectives (discussed
in Chapters 10 and 12). They watch the team’s task board. If a task is taking longer
than expected or blocked, they work with the scrum master and development
team to find opportunities where they can help. See Chapter 11 to better under-
stand how the product owner works throughout the sprint to support product
development.

With a dedicated and decisive product owner, the development team has all the
business support they needs to turn requirements into working functionality. The
following section explains how the product owner helps ensure that the develop-
ment team understands the product they will create.

Development team member
Development team members are the people who create the product. In software
development, programmers, testers, UI designers, writers, data engineers, UX
designers, and anyone else with a hands-on role in product development are
development team members. With other types of product, the development team
members may have different skills.

With agile product development, the development team is

 » Directly accountable for creating deliverables — the product features
and functionality.

 » Self-organizing and self-managing. The development team members
determine their own tasks and how they want to complete those tasks.

 » Cross-functional. Collectively, the development team possesses all skills
required to elaborate, design, develop, test, integrate, and document require-
ments into working functionality, including skills needed to automate the
deployment of their product increments. High-performing development
teams have all the skills needed to create and release product increments to
the customers and users.

CHAPTER 7 Agile Behaviors in Action 129

 » Multi-skilled. Development teams aren’t just cross-functional as a whole;
development team members are also versatile — they’re not tied to a single
skill set. They have existing skills to immediately contribute at the beginning of
development, but they are also willing to learn new skills and to teach what
they know to other development team members.

Every developer should be able to do more than one skill. And every skill
should be able to be done by more than one person. Specialized skill develop-
ers (“I do only one thing”) are great until they’re not. Scrum teams need access
to all skills every day, not just at certain phases in development as in waterfall
projects. If the one developer who knows how to run tests calls in sick even
one day, the whole team is unable to get to done for that day. You need at
least one other person on the team who, in a pinch, can step in to keep the
team moving forward.

 » Ideally dedicated to one product objective for the duration of
development.

 » Ideally collocated. The team (including the product owner and scrum
master) should be working together in the same area of the same office,
preferably in a team room.

What makes a good development team member? Versatility. You want developers
who are intellectually curious — who look for ways to contribute to the sprint goal
a little more today than the day before. Some development team members aren’t
fully versatile at first. Ideally, during the team’s work, developers with one skill
take the opportunity to gain exposure across the stack of skills as they shadow and
pair with other developers, becoming more T-, Pi-, or M-shaped in their skillset,
as shown in Figure 7-3.

High-performing scrum teams have developers whose skill set is Pi (π) or M
shaped. In other words, in addition to their primary skill and their broad exposure
to all the skills needed by the team, they are proficient in one more skill

FIGURE 7-3:
Development

team
 member skill

development.

130 PART 2 Being Agile

(Pi-shaped) or two more skills (M-shaped). Development teams with Pi- and
M-shaped skilled team members typically have a higher velocity because they
eliminate single points of failure.

Take a look at the team responsibilities and matching characteristics in Table 7-2.

The two other members of the scrum team, the product owner and the scrum
master, help support the development team’s efforts in creating the product.
Whereas the product owner ensures that the development team is effective (work-
ing on the right things), the scrum master helps clear the way for the develop-
ment team to work as efficiently as possible.

Scrum master
A scrum master, sometimes called a facilitator or team coach in non-scrum envi-
ronments, is responsible for supporting the development team, clearing organi-
zational roadblocks, and keeping processes true to agile principles.

A scrum master is different from a project manager. Teams using traditional proj-
ect approaches work for a project manager. A scrum master, on the other hand, is
a servant-leader peer who supports the team so that it is fully functional and pro-
ductive. The scrum master role is an enabling role, rather than an accountability
role. You can find more about servant leadership in Chapter 16.

TABLE 7-2 Characteristics of a Good Development Team Member
Responsibility A Good Development Team Member . . .

Creates the product Enjoys creating products

Is skilled in more than one of the jobs necessary to create the product

Is self-organizing and
self-managing

Exudes initiative and independence

Understands how to work through impediments to achieve goals

Coordinates the work to be done with the rest of the team

Is cross-functional Has curiosity

Willingly contributes to areas outside his or her mastery

Enjoys learning new skills

Enthusiastically shares knowledge

Is dedicated and collocated Is part of an organization that understands the gains in efficiency and effec-
tiveness associated with focused, collocated teams

CHAPTER 7 Agile Behaviors in Action 131

With agile product development, the scrum master will

 » Act as a process coach and agile champion, helping the team and the
organization follow scrum values and practices.

 » Help remove impediments — both reactively and proactively — and shield the
development team from external interferences.

 » Work with the product owner to foster close cooperation between stakehold-
ers and the development team.

 » Facilitate consensus building within the scrum team.

 » Protect the scrum team from organizational distractions.

We compare the scrum master to the aeronautical engineer whose job is to reduce
drag on the aircraft. Drag is always there but can be reduced through innovative
and proactive engineering. Likewise, all teams have organizational impediments
creating drag on the team’s efficiency, and there is always another constraint that
can be identified and removed. One of the most significant parts of a scrum
master’s role is challenging the status quo to remove roadblocks and prevent
distractions to the development team’s work. A scrum master who is good at these
tasks is priceless to product development and to the organization. If a development
team has seven people, the effect of a good scrum master is times seven.

What makes a good scrum master? A scrum master doesn’t need project manager
experience. A scrum master is an expert in agile processes and can coach others.
He or she knows the right questions to ask to guide the team to higher perfor-
mance through introspection and retrospection. The scrum master also works
collaboratively with the product owner and the stakeholder community.

Facilitation skills cut through the noise of group gatherings and ensure that ever-
yone on the scrum team is focused on the right priority at the right time.

Scrum masters have strong communication skills, with enough organizational
clout to secure the conditions for success by negotiating for the right environ-
ment, protecting the team from distractions, and removing impediments. Scrum
masters are great facilitators and great listeners. They can negotiate their way
through conflicting opinions and help the team help itself. Review the scrum
master’s responsibilities and matching characteristics in Table 7-3.

Clout is not the same as authority. Organizations need to empower their scrum
masters so they can influence change in the team and organization without for-
mal authority over others. Clout involves earned respect, often through success
and experience. Some types of clout that empower scrum masters come about
through expertise (usually a niche knowledge), longevity (“I’ve been at the

132 PART 2 Being Agile

company a long time and know its history first hand”), charisma (“people gener-
ally like me”), or associations (“I know important people”). Don’t underestimate
the value of a scrum master with organizational clout.

The members of the scrum team — the product owner, development team, and
scrum master — work together every day.

As we mention earlier in the chapter, the scrum team plus stakeholders make up
the product team. Sometimes stakeholders have less active participation than
scrum team members but still can have considerable effect and provide a great
deal of value to a product.

Stakeholders
Stakeholders are anyone with an interest in the product. They are not ultimately
responsible for executing the product, but they provide input and are affected by
the product’s outcome. The group of stakeholders is diverse and can include peo-
ple from different departments or even different companies.

TABLE 7-3 Characteristics of a Good Scrum Master
Responsibility A Good Scrum Master . . .

Upholds scrum values and practices Is an expert on scrum processes

Is passionate about agile techniques

Removes roadblocks and prevents
disruptions

Has organizational clout and can resolve problems quickly

Is articulate, diplomatic, and professional

Is a good communicator and a good listener

Is firm about the development team’s need to focus only on the
product objectives and the current sprint

Fosters close cooperation between
 external stakeholders and the scrum
team

Looks at the needs of the product team as a whole

Avoids cliques and helps break down group silos

Facilitates consensus building Understands techniques to help groups reach agreements

Is a servant-leader Does not need or want to be in charge or be the boss

Ensures that all members of the development team have the infor-
mation they need to do the job, use their tools, and track progress

Truly desires to help the scrum team

CHAPTER 7 Agile Behaviors in Action 133

With agile product development, stakeholders

 » Include the customer

 » May include technical people whose subject-matter expertise can support the
development team to do its work

 » May include the legal department, account managers, salespeople, marketing
experts, and customer service representatives who can affect the product

 » May include product or market subject matter experts besides the product
owner

GAINING CONSENSUS: THE FIST OF FIVE
Part of working as a team means agreeing on decisions as a team. An important part
of being a scrum master is helping the team build consensus. We’ve all worked with
groups where it was difficult to arrive at consensus, from how long a task would take to
where to go for lunch. A quick, casual way to find out whether a group agrees with an
idea is to use the fist of five.

On the count of three, each person holds up a number of fingers, reflecting their degree
of comfort with a proposed path forward as a way to deal with the issue in question:

• 5: I love the idea.

• 4: I think it’s a good idea.

• 3: I can support the idea.

• 2: I have reservations, so let’s discuss.

• 1: I am opposed to the idea.

If some people have three, four, or five fingers up, and some have only one or two, dis-
cuss the idea. Find out why the people who support the idea think it will work, and what
reservations the people who oppose the idea have. After all group members show at
least three fingers — they don’t need to love the idea, but they can support it — you
have consensus and can move forward. The scrum master’s consensus-building skills
are essential for this task.

You can also quickly get an idea of consensus on a decision by asking for a simple
thumb up (support), thumb down (don’t support), or thumb to the side (either way is
fine). Some people refer to this as a Roman vote. It’s quicker than a fist of five, and is
great for answering yes-or-no questions.

134 PART 2 Being Agile

Stakeholders may help provide key insights about the product and its use. Stake-
holders might work closely with the product owner during the sprint, and will
give feedback about the product during the sprint review at the end of each sprint.

Stakeholders and the part they play vary among products and organizations.
Almost all product teams have stakeholders outside the scrum team.

Some product teams also have agile mentors, especially teams that are new to
agile processes.

Agile mentor
A mentor is a great idea for any area in which you want to develop new expertise.
The agile mentor, sometimes called an agile coach, is someone who has experience
implementing agile principles, practices, and techniques, and can share that
experience with a team. The agile mentor can provide valuable feedback and
advice to new teams and to teams wanting to perform at a higher level.

With agile product development, the agile mentor

 » Serves in a mentoring role only and is not part of the scrum team

 » Is often a person from outside the organization, and can provide objective
guidance, without personal or political considerations

 » Is an agile expert with significant diversity of experience in implementing agile
techniques for products of varying contexts

You may want to think of an agile mentor the way you think of a golf coach. Most
people use a golf coach not because they don’t know how to play the game of golf
but because a golf coach objectively observes things that a player engaged in the
game never notices. Golf, like implementing agile techniques, is an exercise where
small nuances make a world of difference in performance.

Establishing New Values
Lots of organizations post their core values on the wall. In this section, however,
we are talking about values that represent a way of working together every day,
supporting each other, and doing whatever it takes to achieve the scrum team’s
commitments.

CHAPTER 7 Agile Behaviors in Action 135

In addition to the values from the Agile Manifesto, the five core values for
scrum are

 » Commitment

 » Courage

 » Focus

 » Openness

 » Respect

The following sections provide details about each of these values.

Commitment
Commitment implies engagement and involvement. With agile product develop-
ment, the scrum team pledges to achieve specific goals. Confident that the scrum
team will deliver what it promises, the organization mobilizes around the pledge
to meet each goal.

Agile processes, including the idea of self-organization, provide people with all
the authority they need to meet commitments. There is no need for managers to
hold scrum teams accountable for every specific task they identify could be done
to achieve their business goals. Tasks may change, but business goals are what
matter and drive outcomes. Scrum teams hold each other accountable because
they are purpose-driven or outcome-driven. With strategic stability, they main-
tain tactical flexibility.

Commitment requires a conscious effort. Consider the following points:

 » Scrum teams must be realistic when making commitments, especially for
short sprints. Aim high, but not unrealistically high.

 » Scrum teams must fully commit to goals. This includes having consensus
among the team that the goal is achievable. After the scrum team agrees on a
goal, the team does whatever it takes to reach that goal.

 » The scrum team is pragmatic but ensures that every sprint has a tangible
value. Achieving a sprint goal and completing every item in the goal’s scope
are different. For example, a sprint goal of proving that a product can perform
a specific action is much better than a goal stating that exactly seven require-
ments will be complete during the sprint. Effective scrum teams focus on the
goal and remain flexible in the specifics of how to reach that goal.

136 PART 2 Being Agile

 » Scrum teams are willing to be accountable for results. The scrum team has
the power to be in charge of the product. As a scrum team member, you can
be responsible for how you organize your day, the day-to-day work, and the
outcome.

Consistently meeting commitments is central to using agile approaches for long-
term planning. In Chapter 15, you read about how to use performance to accu-
rately determine schedules and budgets.

Focus
Working life is full of distractions. Plenty of people in your organization would
love to use your time to make their day easier. Disruptions, however, are costly.
Jonathan Spira, from the consulting firm Basex, published a report called “The
Cost of Not Paying Attention: How Interruptions Impact Knowledge Worker
 Productivity.” His report details how businesses in the United States lose close to
$600 billion a year through workplace distractions.

Scrum team members can help change those dysfunctions by insisting on an
environment that allows them to focus. To reduce distractions and increase
 productivity, scrum team members can

 » Physically separate themselves from company distracters. One of our
favorite techniques for ensuring high productivity is to find an annex away
from the company’s core offices and have that be the scrum team’s work
area. Sometimes the best defense is distance.

 » Ensure that you’re not spending time on activities unrelated to the
sprint goal. If someone tries to distract you from the sprint goal with
something that “has to be done,” explain your priorities. Ask, “How will this
request move the sprint goal forward?” This simple question can push a
lot of activities off the to-do list.

 » Figure out what needs to be done and do only that. The development
team determines the tasks necessary to achieve the sprint goal. If you’re a
development team member, use this ownership to drive your focus to the
priority tasks at hand.

 » Balance focused time with accessibility to the rest of the scrum team.
Francesco Cirillo’s Pomodoro technique — splitting work into 25-minute time
blocks, with breaks in between — helps achieve balance between focus and
accessibility. We often recommend giving development team members
noise-canceling headsets, the wearing of which is a “do not disturb” sign.

CHAPTER 7 Agile Behaviors in Action 137

However, we also suggest a team agreement that all scrum team members
have a minimum set of “office hours” in which they are available for
collaboration.

 » Check that you’re maintaining your focus. If you’re unsure of whether you
are maintaining focus — it can be hard to tell — go back to the basic question,
“Are my actions consistent with achieving the overall goal and the near-term
goal (such as completing the current task)?”

As you can see, task focus is not a small priority. Extend the effort up front to
create a distraction-free environment that helps your team succeed.

Openness
Secrets have no place on a scrum team. If the team is responsible for the result of
the product, it only makes sense that the team has all the facts at its disposal.
Information is power, and ensuring that everyone — both the scrum team and
stakeholders — have access to the information necessary to make the right deci-
sions requires a willingness to be transparent. They agree to be transparent with
not only the progress of work but also the challenges with performing the work.
To leverage the power of openness, you can

 » Ensure that everyone on the team has access to the same information.
Everything from the product vision down to the smallest detail about the
status of tasks needs to be in the public domain as far as the product team is
concerned. Use a centralized repository as the single source for information,
and then avoid the distraction of “status reporting” by putting all status
(burndowns, impediment list, and so forth) and information in this one place.
We often send a link to this repository to the stakeholders and say, “All the
information we have is a click away. There is no faster way to get updated.”

 » Be open and encourage openness in others. Team members must feel free
to speak openly about problems and opportunities to improve, whether the
issues are something that they’re dealing with themselves or see elsewhere in
the team. Openness requires trust within the team, and trust takes time to
develop.

 » Defuse internal politics by discouraging gossip. If someone starts talking to
you about what another team member did or didn’t do, ask him or her to take
the issue to the person who can resolve it. Don’t gossip yourself. Ever.

 » Always be respectful. Openness is never an excuse to be destructive or
mean. Respect is critical to an open team environment.

138 PART 2 Being Agile

Small problems unaddressed often grow to become crises. Use an open environ-
ment to benefit from the input of the entire team and ensure that your develop-
ment efforts are focused on the product’s true priorities.

Respect
Each individual on the team has something important to contribute. Your back-
ground, education, and experiences have a distinctive influence on the team.
Share your uniqueness and look for, and appreciate, the same in others. Scrum
team members respect each other as capable, independent people. You encourage
respect when you

 » Foster openness. Respect and openness go hand in hand. Openness without
respect causes resentment; openness with respect generates trust.

 » Encourage a positive work environment. Happy people tend to treat one
another better. Encourage positivity, and respect will follow.

 » Seek out differences. Don’t just tolerate differences; try to find them. The
best solutions come from diverse opinions that have been considered and
appropriately challenged.

 » Treat everyone on the team with the same degree of respect. All team
members should be accorded the same respect, regardless of their role, level
of experience, or immediate contribution. Encourage everyone to give his or
her best.

Respect is the safety net that allows innovation to thrive. When people feel com-
fortable raising a wider range of ideas, the final solution can improve in ways that
would never be considered without a respectful team environment. Use respect to
your team’s advantage.

Courage
The last scrum value is courage. We list it last because it requires courage to live
the other four scrum values. In other words, it takes courage to commit to goals.
It takes courage to focus. It takes courage to be open, and it takes courage to show
and expect respect. Bottom line, it takes courage to do scrum — not just at first,
but always.

Embracing agile techniques is a change for many organizations. Successfully
making changes requires courage in the face of resistance. It takes courage to do
the right thing and to work on tough problems. Following are some tips that foster
courage:

CHAPTER 7 Agile Behaviors in Action 139

 » Realize that the processes that worked in the past won’t necessarily
work now. Sometimes you need to remind people of this fact. If you want to
be successful with agile techniques, your everyday work processes need
to change.

 » Be ready to buck the status quo. The status quo will push back. Some
people have vested interests and will not want to change how they work.

 » Temper challenge with respect. Senior members of the organization might
be especially resistant to change because they often created the old rules.
You’re challenging those rules. Respectfully remind them that you can achieve
the benefits of agile techniques only by following the 12 Agile Principles
faithfully. Ask them to give change a try.

 » Embrace the scrum values. Have the courage to make commitments
and stand behind those commitments. Have the courage to focus and tell
distracters “no.” Have the courage to be open and to acknowledge that there
is always an opportunity to improve. And have the courage to be respectful
and tolerant of other people’s views, even when they challenge your views.

As you replace your organization’s antiquated processes with more modern
approaches, expect to be challenged. Take on that challenge; the rewards can be
worth it in the end.

Changing Team Philosophy
An agile development team operates differently from a team using a waterfall
approach. Development team members must change their roles based on each
day’s priorities, organize themselves, and think about product development in a
whole new way to achieve their commitments.

To be successful scrum teams should embrace the following attributes:

 » Dedicated team: Each scrum team member works only on the product
objectives decided by the scrum team, and not on other teams or products.
Product development may finish on one product, and then new development
may start on a new product, but the team stays the same long-term.

 » Cross-functionality: The willingness and ability to work on different types of
tasks to create the product.

 » Self-organization: The ability and responsibility to determine how to go
about the work of product development.

140 PART 2 Being Agile

 » Self-management: The ability and responsibility to keep work on track.

 » Size-limited teams: Right-size development teams to ensure effective
communication. Smaller is better; the development team should never be
larger than nine people.

We’ve found that development teams of four to six people are the right size.
The lines of communication to self-organize around the work are not too
complex, adequate skill coverage exists, and the cost is manageable.

 » Ownership: Take initiative for work and responsibility for results. Have pride
in your craftsmanship.

The following sections look at each of these ideas in more detail.

Dedicated team
A traditional approach to resource allocation (we prefer the term talent allocation —
people are not inanimate objects) is to allocate portions of team members’ time
across multiple teams and projects to get to full 100 percent utilization to justify
the expense of employing team members. For management, knowing that all
hours of the week are accounted for and justified is gratifying. However, the result
is lower productivity due to continual context switching — the cost associated with
cognitive demobilization and remobilization to switch from one task to another.
Work in progress has no value; completed work does.

Other common talent allocation practices include moving a team member from
team to team to temporarily fill a skill gap or a manpower gap, and tasking a team
with multiple projects at once. These tactics are often employed to try to do more
with less, but all the input variances make it nearly impossible to predict outputs.

These approaches have similar results: a significant decrease in productivity and
an inability to extrapolate performance. Studies clearly show a minimum of
30 percent increase in the time required to complete product objectives run in
parallel instead of serially.

Thrashing is another term for context switching between tasks. Avoid thrashing by
dedicating team members to a single product objective at a time.

The following results occur when you dedicate scrum teams to work on only one
objective at a time:

 » More accurate release projections: Because the same people are consis-
tently doing the same tasks every sprint with the same amount of time
allocated from sprint to sprint, scrum teams can accurately and empirically

CHAPTER 7 Agile Behaviors in Action 141

extrapolate how long it will take to complete their remaining backlog items
with more certainty than traditional splintered approaches.

 » Effective, short iterations: Sprints are short because the shorter the
feedback loop, the more quickly scrum teams can respond to feedback and
changing needs. There just isn’t enough time for thrashing team members
between competing priorities.

 » Fewer and less costly defects: Context switching results in more defects
because distracted developers produce lower quality functionality. It costs less
to fix something while it is still fresh in your mind (during the sprint) than later,
when you have to try to remember the context of what you were working on.
Studies show that defects cost 6.5 times more to fix after the sprint ends and
you’ve moved on to other requirements, 24 times more to fix when preparing
for release, and 100 times more to fix after the product is in production.

If you want more predictability, higher productivity, and fewer defects, dedicate
your scrum team members. We’ve found this to be one of the highest factors of
agile transition success.

Cross-functionality
On traditional projects, experienced team members are often typecast as having a
single skill. For example, a .NET programmer may always do .NET work, and a
tester may always do quality control work. Team members with complementary
skills are often considered to be part of separate groups, such as the programming
group or the testing group.

Agile approaches bring the people who create products together into a cohesive
group — the development team. People on agile development teams try to avoid
titles and limited roles. Development team members may start out on the team
with one skill, but learn to perform many different jobs throughout as they help
create the product.

Cross-functional development teams collectively possess all the skills required to
take product requirements from idea to delivered value. But cross-functional
teams aren’t enough. Cross-functional individuals make development teams more
efficient.

For example, suppose a daily scrum meeting uncovers testing as the highest pri-
ority task to complete the requirement that day. A programmer or a designer who
also has some skill at testing steps in to help and finish the task more quickly, or
possibly in the absence of another development team member who called in sick
that day. When the development team is cross-functional, it can swarm (a

142 PART 2 Being Agile

technique for limiting work in progress) on one product requirement at a time,
with as many people working on a single requirement as possible, to quickly com-
plete the feature.

Cross-functionality also helps eliminate single points of failure. Consider tradi-
tional projects, where each person knows how to do one job. When a team member
gets sick, goes on vacation, or leaves the company, no one else may be capable of
doing his or her job. The tasks that person was doing are delayed. By contrast,
cross-functional agile development team members are capable of doing many
jobs. When one person is unavailable, another can step in.

Cross-functionality encourages each team member to

 » Set aside the narrow label of what he or she can do. Titles have no place
on a scrum team. Skills and an ability to contribute are what matter. Start
thinking of yourself as a Special Forces commando — knowledgeable enough
in different areas that you can take on any situation.

 » Work to expand skills. Don’t work only in areas you already know. Try
to learn something new during each sprint. Techniques such as mob
programming — where entire teams work together to code one item — can
help you learn new skills quickly and increase overall product quality. A more
detailed explanation of mob programming is discussed in Chapter 11.

 » Step up to help someone who has run into a roadblock. Helping someone
with a real-world problem is a great way to learn a new skill.

 » Be flexible. A willingness to be flexible helps to balance workloads and makes
the team more likely to reach its sprint goal.

With cross-functionality in place, you avoid waiting for key people to work on
tasks. Instead, a motivated, even if somewhat less knowledgeable, development
team member can work on the next highest priority piece of functionality today
rather than starting on something of lower priority. That development team
member learns and improves, and the workflow continues to be balanced. Cross-
functional teams enable the next available person to pull the next task needing to
be completed, whatever that might be (rather than having someone push work to
the person).

One big payback of cross-functionality is that the development team completes
work quickly. Post-sprint review afternoons are often celebration time. Go to the
movies together, play video games, head to the beach or the bowling alley, or go
home early.

CHAPTER 7 Agile Behaviors in Action 143

Self-organization
Agile techniques emphasize self-organizing development teams to take advan-
tage of development team members’ varied knowledge and experience.

If you’ve read Chapter 2, you may recall Agile Principle #11: The best architectures,
requirements, and designs emerge from self-organizing teams.

Self-organization is an important part of being agile. Why? In a word: ownership.
Self-organized teams are not complying with orders from others; they own the
solution developed and that makes a huge difference in team member engage-
ment and solution quality.

For development teams used to a traditional command-and-control project man-
agement model, self-organization may take some extra effort at first. Agile devel-
opment teams do not have a project manager to tell them what to do. Instead,
self-organizing development teams

 » Commit to their own sprint goals. At the beginning of each sprint, the
development team works with the product owner to identify an objective it
can reach, based on priorities.

 » Identify their tasks. Development team members determine the tasks
necessary to meet each sprint goal. The development team works together to
figure out who takes on which task, how to get the work done, and how to
address risks and issues.

 » Estimate the effort necessary for requirements and related tasks. The
development team knows the most about how much effort it will take to
create specific product features.

 » Focus on communication. Successful agile development teams hone their
communication skills by being transparent, communicating face-to-face, being
aware of nonverbal communication, participating, and listening.

The key to communication is clarity. With complex topics, avoid one-way,
potentially ambiguous modes of communication, such as email. Face-to-face
communication prevents misunderstandings and frustration. You can always
summarize the conversation in a quick email later if details need to be
retained. Learn more about using effective mediums of communication in
Chapter 6.

 » Collaborate. Getting the input of a diverse scrum team almost always
improves the product but requires solid collaboration skills. Collaboration is
the foundation of an effective scrum team. Development teams take input
from stakeholders but own their final solution.

144 PART 2 Being Agile

No successful product is an island. Collaboration skills help scrum team
members take risks with ideas and bring innovative solutions to problems.
A safe and comfortable environment is a cornerstone of a successful agile
development effort.

 » Decide with consensus. For maximum productivity, the entire development
team must be on the same page and committed to the goal at hand. The
scrum master often plays an active role in building consensus, but the
development team ultimately takes responsibility for reaching agreement on
decisions, and everyone owns the decisions.

 » Actively participate. Self-organization may be challenging for the shy, but all
development team members must actively participate. No one is going to tell
the development team what to do to create the product. The development
team members tell themselves what to do. And when. And how.

In our agile coaching experience, we’ve heard new development team members
ask questions like, “So, what should I do now?” A good scrum master answers
by asking the developer what he or she needs to do to achieve the sprint goal, or
by asking the rest of the development team what they suggest. If a requirement
isn’t completed but there are no new tasks to start, before beginning a new
requirement (and increasing the team’s work-in-progress), ask, “Is there some-
one you can help?” or “Is there something you can learn by shadowing?” Answer-
ing questions with questions can be a helpful way to guide a development team
toward being self-organizing.

Being part of a self-organizing development team takes responsibility, but it also
has its rewards. Self-organization gives development teams the freedom to suc-
ceed. Self-organization increases ownership, which can result in better products,
which can help development team members find more satisfaction in their work
and pride in their craftsmanship.

Self-management
Self-management is closely related to self-organization. Agile development teams
have a lot of control over how they work; that control comes with the responsibil-
ity for ensuring the product is successful. To succeed with self-management,
development teams

 » Allow situational leadership to ebb and flow. With agile product develop-
ment, each person on the development team has the opportunity to lead. For
different tasks, different leaders will naturally emerge; leadership will shift
throughout the team based on skill expertise and previous experiences,
not title.

CHAPTER 7 Agile Behaviors in Action 145

 » Rely on agile processes and tools to manage the work. Agile methods are
tailored to make self-management easy. With an agile approach, meetings
have clear purposes and time limits, and artifacts expose information but rely
on minimal effort to create and maintain. Taking advantage of these pro-
cesses allows development teams to spend most of their time creating the
product.

 » Report progress regularly and transparently. Each development team
member is responsible for accurately updating work status on a daily basis.
Luckily, progress reporting is a quick task. In Chapter 11, you find out about
burndown charts, which provide status but only require a few minutes each
day to update. Keeping status current and truthful makes planning and issue
management easier.

 » Manage issues within the development team. Many obstacles can arise:
Development challenges and interpersonal problems are a couple of exam-
ples. The development team’s first point of escalation for most issues is the
development team itself.

 » Create a team agreement. Development teams sometimes make up a team
agreement, a document that outlines the expectations each team member
will commit to meet. Working agreements provide a shared understanding of
behavioral expectations and empower the facilitator to keep the team on
track according to what it has already agreed together.

 » Inspect and adapt. Figure out what works for your team. Best practices differ
from team to team. Some teams work best by coming in early; others work
best by coming in late. The development team is responsible for reviewing its
own performance and identifying techniques to continue and techniques to
change.

 » Actively participate. As with self-organization, self-management works
only when development team members join in and commit to guiding the
product’s direction.

The development team is primarily responsible for self-organization and self-
management. However, the scrum master can assist the development team in a
number of ways. When development team members look for specific directions,
the scrum master can remind them that they have the power to decide what to do
and how to do it. If someone outside the development team tries to give orders,
insist on tasks, or dictate how to create the product, the scrum master can inter-
vene. The scrum master can be a powerful ally in the development team’s self-
organization and self-management.

146 PART 2 Being Agile

Size-limited teams
Agile development teams are intentionally small. A small development team is a
nimble team. As the development team size grows, so does the overhead associ-
ated with orchestrating task flow and communication flow.

Ideally, agile development teams have the least number of people necessary to be
self-encapsulated (can do everything necessary to produce the product) and not
have single points of failure. To have skill coverage, teams typically won’t be any
smaller than three people. Statistically, scrum teams are fastest with six
developers, and cheapest with four to five developers. Keeping the development
team size between three and nine people helps teams act as cohesive teams, and
avoids creating subgroups, or silos.

Limiting development team size

 » Encourages diverse skills to be developed.

 » Facilitates good team communication. (Each additional team member
increases team communication channels geometrically — that’s not exponen-
tially, but it’s close — as shown in Figure 7-4.)

 » Maintains the team in a single unit.

 » Promotes joint ownership, cross-functionality, and face-to-face
communication.

FIGURE 7-4:
Team

 communication
complexity

is a function of
team size.

CHAPTER 7 Agile Behaviors in Action 147

When you have a small development team, a similarly limited and focused scope
follows. Development team members are in close contact throughout the day as
tasks, questions, and peer reviews flow back and forth among teammates. This
cohesiveness ensures consistent engagement, increases communication, and
reduces risk.

When you have a large product and a correspondingly large development team,
split the work between multiple scrum teams. For more on scaling — or better yet
de-scaling — across the enterprise, see Chapter 19.

Ownership
Being part of a cross-functional, self-organized, self-managing development
team requires responsibility and ownership. The top-down management
approaches on traditional projects do not always foster the maturity of ownership
necessary for taking responsibility for products and results. Even seasoned devel-
opment team members may need to adjust their behavior to get used to making
decisions.

Development teams can adapt behavior and increase their level of ownership by
doing the following:

 » Take initiative. Instead of waiting for someone else to tell you what to work
on, take action. Do what is necessary to help meet commitments and goals.

 » Succeed and fail as a team. With agile product development, accomplish-
ments and failures alike belong to the team. If problems arise, be accountable
as a group, rather than finding blame. When you succeed, recognize the
group effort necessary for that success.

 » Trust the ability to make good decisions. Development teams can make
mature, responsible, and sound decisions about product development. This
takes a degree of trust as team members become accustomed to having
more control.

Behavioral maturity and ownership doesn’t mean that agile development teams
are perfect. Rather, they take ownership for the scope they commit to, and they
take responsibility for meeting those commitments. Mistakes happen. If they
don’t, you aren’t pushing yourself outside your comfort zone. A mature develop-
ment team identifies mistakes honestly, accepts responsibility for mistakes
openly, and learns and improves from its mistakes consistently.

CHAPTER 8 The Permanent Team 149

Chapter 8
The Permanent Team

Describing a product development team as a permanent team may seem a
bit extreme. How can a team working in today’s ever-changing business
environment become permanent? Product development teams who work

together consistently on long-lived products become more effective with time.
Certainly, team adjustments may occur so that team members can pursue career
growth or other business opportunities, but each change in the team’s composi-
tion causes the team to step back and relearn. For this reason, teams should be as
long-lived, stable, and enduring as possible for sustained quality product
development.

Enabling Long-Lived Product
Development Teams

Today’s products are required to meet a multitude of both near-term and long-
term needs. With traditional project management, the horizon for realizing value
from a product development project spans months to a year or even multiple
years. Return on product-focused investments, however, can start much earlier
and last much longer. It’s not uncommon for a product to last and evolve effec-
tively for six or ten or more years. New ideas or needs are continually identified
through maintenance and enhancement requests. Stable, enduring, and long-lived

IN THIS CHAPTER

 » Understanding why permanent
teams are needed

 » Figuring out what motivates people

 » Seeing why and how permanent
teams continuously improve
knowledge and capability

150 PART 2 Being Agile

product development teams are best suited for building long-lived, valuable
products.

Instead of being a cost center, high-performing teams can become a revenue and
cost-saving center. They become valuable organizational assets capable of tack-
ling difficult problems.

At an individual level, long-lived teams become almost like a family. Family-
sized. Vulnerable and honest with each other. Accomplishing challenges or hur-
dles placed in its path. They may even eat or socialize together, and they definitely
learn and work together day in and day out. Being part of a great team can be one
of the most rewarding experiences of a person’s career.

Peter Senge, in his book The Fifth Discipline: The Art and Practice of the Learning Orga-
nization (Doubleday), wrote: “When you ask people what it is like being part of a
great team, what is most striking is the meaningfulness of the experience. People
talk about being part of something larger than themselves, of being connected, of
being generative. It becomes quite clear that, for many, their experiences as part
of truly great teams stand out as singular periods of life lived to the fullest. Some
spend the rest of their lives looking for ways to recapture that spirit.”

Agile principles and values were defined to help teams work together. Keep in
mind the following key principles:

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Leveraging long-term knowledge
and capability
Product development teams use empirical process controls to inspect and adapt
and learn. They learn about the customer, users, product, architecture, and spon-
sors. Every day they learn better techniques for improving their product and
working more effectively with each other. Because the teams are ideally collo-
cated, they know their teammates’ personal lives, work aspirations, dreams, and
goals. With time, they develop a valuable shared memory that they use as a refer-
ence for all their work.

CHAPTER 8 The Permanent Team 151

Handoffs are one of the “Seven Wastes of Software Development” mentioned by
Mary and Tom Poppendieck in their book Implementing Lean Software Development:
From Concept to Cash (Addison-Wesley Professional). Half of a team’s knowledge is
lost during a hand-off, and the situation compounds — if Bob tells Jim who tells
Sue, then 75 percent of the knowledge is lost. Asking someone else to pick up
where you left off requires costly context switching, repeated research, and a re-
understanding of the product work. Swapping team members into and out of the
team and asking them to hand off their work can be costly.

Product development teams become incubators for learning. Capability is devel-
oped as the team works together. When team members learn something new that
will benefit their team, they are excited and willingly share it. The team creates a
safe environment for experimentation, failure, and vulnerability.

Teammates want each other to be successful. Everyone on the team knows that
the more skilled they become, the more effective they’ll be at creating better
products faster. Sprint review after sprint review and sprint retrospective after
sprint retrospective uncover new understanding that incrementally move the
team forward. (Find out more about sprint reviews and sprint retrospectives in
Chapter 12.)

From a product perspective, over time product development teams gain a deep
understanding about the product and its architecture. They understand intimately
how the product functions, what to test for, areas to avoid, product documenta-
tion, and much more. Change is easily implemented because they understand
every part of the product that could be affected by the change. Emergent architec-
ture comes to life because the team builds an architecture that is barely sufficient
for the current need and evolves when needed.

Staffing product development teams for the long-term maximizes the benefit for
the product, the organization, the team, and the individuals on the team.

Navigating Tuckman’s phases to
performance
When teams learn to work with one another, the process is known as team devel-
opment. Bruce Tuckman, an educational psychologist, outlined the following five
phases that most teams follow:

 » Forming: During this phase, the team orients itself and gets acquainted. In
this period of uncertainty, team members seek to understand common
expectations, personal fit within the team, and how they’ll benefit from
interacting with their teammates. Team interactions are social as team
members get to know one another.

152 PART 2 Being Agile

 » Storming: This phase can be the most visibly difficult for the team. After team
members become acquainted, the realization sets in that they must work with
each other in accomplishing a goal. Personality types clash, interpersonal
conflicts arise, frustrations increase, and competition heightens. This phase, if
not carefully facilitated by a scrum master, can bog down the team and result
in long-term problems. Team performance is often at its lowest during
storming.

 » Norming: If the team successfully emerges from storming, a sense of unity
emerges. Roles become clearer, interpersonal differences are resolved, and
performance begins to improve. If conflict goes unresolved, the team may
slide back into storming.

 » Performing: During this phase, the team begins to hit its stride. Alignment on
goals is clear and each person begins to understand how they can best help
their teammates. Problems and conflicts may arise, but they are dealt with
constructively. The team experiences an openness and transparency with one
another that leads to improved performance.

 » Adjourning: At some point far in the future (we hope), the product or team
may reach its conclusion and end. If a new product is started for an existing
team, however, the team will experience a bit of adjourning as it transitions
from the old product to the new product. The team’s journey may navigate
again through the previous four stages.

No team escapes navigating these phases, and no team can skip a phase because
each is crucial for the team’s development. Many teams go through multiple
stages more than once. Unfortunately, many teams wander the storming phase
longer than they want. Yet the storming phase, like the refiner’s fire, makes
reaching the performing phase as a team that much healthier. Storming builds
team character, alignment, and strength.

Address the storming phase head on. Each interpersonal conflict and poor behav-
ior must be addressed. Scrum masters lead the team in inspecting its working
agreement (discussed in the “Creating a working agreement” section) to build
consensus, improved behavior, and team alignment.

Disrupting a performing team with staff changes sends the entire team, at least to
a certain degree, back to the forming phase as each person once again learns how
the change effects where they fit. High-performing teams should be leveraged
rather than disrupted to build new teams. Agile organizations encourage teams to
pull from an organizational backlog of value-driven opportunities rather than
push people to staff traditional projects.

CHAPTER 8 The Permanent Team 153

Team member thrashing (multitasking) is costly. Effective multitasking is a myth.
High-performing teams focus on one objective, do it well, and then attack the
next most important objective. Thrashing is a failure of prioritization. If you want
to improve performance, change the structures in place for prioritization. See
Chapters 5 and 7 to learn more about the evils of thrashing.

The journey to become a high-performing team is not easy. Each of Tuckman’s
phases is filled with challenges, learning opportunities, and growth. When a team
performs together well, keep it together as long as you possibly can.

In their famous 1986 article “The New New Product Development Game,” which
started the scrum analogy, Hirotaka Takeuchi and Ikujiro Nonaka revealed that
high-performing teams share three attributes: They are autonomous, self-
transcendent, and cross-fertilized. A high-performing team discovers and deliv-
ers outcomes that have significant effects on the customer:

 » Autonomous in that they are able to set their own direction and act indepen-
dently. They are self-organizing and self-managing.

 » Self-transcendent in that the team pursues pushing the limit, continually
establishing and then elevating its own goals.

 » Cross-fertilized in that they are a diverse, multi-skilled team willing to share
its knowledge and expertise.

These three factors above all else lead to high performance.

Focusing on fundamentals
Sports coaches often say, “Practice the fundamentals.” The same is true for prod-
uct development teams. High-performing teams became high performing because
of their mastery of the fundamentals. This mastery is gained through experience.
Understanding the fundamentals allows the team to continually improve its exe-
cution or team development. The migration of an team’s journey to improved
performance is often referred to as Shu Ha Ri.

Shu Ha Ri, a Japanese marital art concept in Aikido, is used to describe the stages of
learning to mastery. In Chapter 20, we discuss Shu Ha Ri in the concept of maturing
and solidifying organizational change movements. In this chapter, it’s helpful to
understand the importance of achieving Shu to get the fundamentals right first.

 » Shu (obey): During this initial phase students follows the teachings of one master
precisely. The concentration is on how to do the task. Multiple ways may be
possible for completing the task, but the students focus on the one way taught
by the master. Students commit the skill to memory and make it automatic.

154 PART 2 Being Agile

 » Ha (detach): At this point, students begin to branch out. They start to learn
the underlying principles and theory behind the technique. They begin to
consider ideas from other masters and incorporate those ideas into their
practice. Students learn more about the skill from successes and failures as
they improvise.

 » Ri (transcend): During this phase students begin learning from their own
practice rather than from other people. Students create their own approach
and adapt what they’ve learned to their own circumstance. At the end of this
phase, the skill comes naturally to these now-former students, who will know
what works and what doesn’t.

Shu Ha Ri focuses early stages of learning on steps to imitate, and then shifts to
understanding principles and lastly to self-directed innovation. Solid under-
standing of the fundamentals make Ha and Ri possible.

High-performing teams use Shu Ha Ri. They learn and practice extensively the
agile fundamentals over and over again. Sprint after sprint, their learning and
performance improve, until they move into Ha, which brings a new set of learning
for the team. Ri finally comes, but only after time and extensive effort have been
invested in Shu and Ha, again reinforcing the importance of a long-lived team.

Creating a working agreement
Fundamental to a team’s success is their working agreement, or expected norms for
team behavior. Working agreements are guidelines defined by the team (not
imposed on the team) as to how it agrees to work together to create a positive,
productive development process. Many teams write out their agreements, sign
them, and then post them on a wall for quick reference and constant reminders. A
team will empower a team facilitator (often the scrum master) to help the team
self-manage the agreement. Wise scrum masters help their teams to self-
evaluate behavior against the agreed-to norms.

Working agreements benefit teams by helping them to

 » Develop a sense of shared responsibility

 » Increase awareness of each member’s own behavior

 » Empower the facilitator to lead the group according to the agreements

 » Enhance the quality of the group process

Agreements work well when the agreement items are important to the team
(meaning the team identifies the need and how to handle it), are limited in num-
ber, and are fully supported by each team member.

CHAPTER 8 The Permanent Team 155

Examples of typical working agreement topics may include the following:

 » Meetings: Start and end times, meeting behaviors, and etiquette

 » Working together: Participation expectations, transparency methods, and
consensus building

Team working agreements build behavior alignment. The best working agree-
ments are defined by the team and for the team and are enforced by the team.
Keep in mind that working agreements are different for every team. Just because
one team struggles with a particular behavior doesn’t mean every team’s agree-
ment needs to address that behavior. The best working agreements are brief —
three to five items — making them easy to remember and self-enforce. The best
working agreements should address only those items important to your team.

Enabling Autonomy, Mastery,
and Purpose

Many organizations debate the best way to motivate people. Some question if
money or other tangible rewards are motiving. Is it better to use the proverbial
stick or carrot? Daniel H. Pink, in his best-selling 2009 book Drive: The Surprising
Truth About What Motivates Us (Riverhead Books), reveals from his research that
true motivation comes by giving team members autonomy, mastery, and purpose.

Autonomy
Autonomy is the freedom or independence to be creative in problem solving — to
be the captain of your own destiny. High-performing teams are made up of people
who are free to solve customer problems in the best way they see fit. Autonomy
allows the team to become self-organizing and self-managing. High-performing
teams can also behave autonomously, becoming empowered to do what is needed
for their customers, sponsors, and stakeholders.

Mastery
Mastery is the internal drive the team demonstrates to excel in its trade. The
opportunity to become curious and learn necessary skills, even multiple skills, is
rewarding. Team members have pride in their craftsmanship and use their mas-
tery to build quality into their products. After a skill or concept is learned, team
members are quick to share what they’ve learn so that everyone on the team can
improve. “Learn then teach” reinforces and supports the team’s mastery.

156 PART 2 Being Agile

Purpose
Purpose is the transcendent overarching objective for product development teams.
It’s the greater good for which they strive and give their full effort. The purpose is
what brings them to the office each day feeling passion and determination for
accomplishing great things. Studies, including a 2018 Harvard Business Review arti-
cle written by Shawn Achor, Andrew Reece, Gabriella Rosen Kellerman, and Alexi
Robichaux (“9 Out of 10 People Are Willing to Earn Less Money to Do More Mean-
ingful Work”), show that people are willing to earn less money to do more mean-
ingful work.

Teams and organizations who enable autonomy, mastery, and purpose are on the
path toward improved team member motivation. As Principle 5 states, “Build
projects around motivated individuals. Give them the environment and support
they need, then trust them to get the job done.”

TEAMMATES HELPING TEAMMATES
An extremely talented development team member was passionate about the quality of
his team’s product. At times, however, his passion became contentious as he berated
his teammates for their lack of attention to detail and poor quality. Like a storm blowing
in and leaving a wake of scattered debris, each occurrence lowered the entire team’s
energy and motivation. Discussions about this team member with HR were frequent.

To help his teammate, the scrum master called each morning during their morning
commute to hold what they called a venting session. The scrum master asked ques-
tions, and then just listened while his teammate shared his concerns, fears, and frustra-
tions. Never judging, but simply trying to be his friend, the scrum master was able to
help his teammate reframe his perspective in preparation for the day of work.

The results from the daily ritual were amazing! The team member trusted the scrum
master, having worked with him for an extended period, and was able to adjust his
behavior. Teammates recognized the change and the entire team improved — it started
reaching its sprint goals and more!

Both the team member and the scrum master look back on the experience with fond-
ness, recognizing the deep foundation for their friendship, which has lasted longer than
their employment with the organization. Enduring team relationships matter.

CHAPTER 8 The Permanent Team 157

Highly aligned and highly
autonomous teams
High-performing agile organizations have highly aligned and highly autonomous
teams — almost like decomposing a large organizational ship into smaller speed
boats, all pointing in the same direction.

Team autonomy helps the team to thrive. The team becomes empowered with the
freedom and independence to do whatever is necessary to help the organization
accomplish the aligned goal. Team autonomy helps each team leverage its unique-
ness in solving the problems that only it can solve.

Leaders in agile organizations set strong visions for their teams but allow the
teams to determine for themselves how to reach that vision.

Figure 8-1 describes the leaders’ role in building alignment and autonomy across
four quadrants from low to high. The maximum benefit is achieved when teams
become both highly aligned and highly autonomous.

Building Team Knowledge and Capability
High-performing teams invest in education. They understand that learning is
essential for building knowledge and capability. Although training in specific
skills can be valuable, many teams find that becoming part of a community of
practice or guild is also helpful.

FIGURE 8-1:
Highly aligned

and autonomous
team quadrants.

158 PART 2 Being Agile

A community of practice (CoP) is a group of people who share a common concern, set
of problems, or interest in a topic and who come together to fulfill both individual
and group goals. For example, product owners who want to learn how to improve
their role participate in a community of practice with all other product owners, or
people interested in learning more about product ownership participate to develop
their skills. They discuss their challenges and keys for success, inspiring each
other to experiment in their own situation. They collectively engage additional
help, mentoring, and coaching from experts beyond their own expertise.

Communities of practice often focus on sharing best practices and creating knowl-
edge to advance a domain of professional practice. Interaction on an ongoing basis
is an important part of this. Many communities of practice rely on face-to-face
meetings as well as web-based collaborative environments to communicate, con-
nect, and conduct community activities.

Many communities of practice use the lean coffee approach to generating and
discussing important topics, which is a simple way to ensure that the topics peo-
ple care about most are given the majority of the community’s time.

Lean coffee is a simple meeting facilitation technique. Participants take a few
minutes at the beginning to brainstorm ideas they’d like to discuss with the group.
Once submitted, the ideas are organized into themes. Each person is given an
opportunity to then cast five dot votes (dots on topic Post-it Notes with a marker).
Each person can allocate their dot votes however they like, whether it’s placing
five on one topic or one on five separate topics. Topics receiving the most votes are
prioritized first. Each topic is given a set amount of time for discussion, say 8
minutes. When the time expires, the group votes using thumbs up or down to add
8 more minutes, then 5, then 3, and then they either agree or disagree to stop and
move to the next topic. Participants leave lean coffee discussions having covered
the topics most valuable to them.

Communities of practice can be formed for all other team roles, interests, or orga-
nizational disciplines such as architecture, user experience, security, training, and
customer support. The sky is the limit! Community members leave their commu-
nity of practice discussions with pragmatic ideas for building team knowledge and
capability.

By understanding the hard work, dedication, learning, and capability develop-
ment required to become a high-performing team, it stands to reason that the
team will maximize its contribution the longer it stays together. Customers who
use long-term products benefit most from high-performing, long-lived, and
enduring teams.

3Agile Planning
and Execution

IN THIS PART . . .

Follow the Roadmap to Value, from product vision to
execution.

Define and estimate requirements.

Create working functionality and showcase it in
iterations.

Inspect your work and adapt your processes for
continuous improvement.

CHAPTER 9 Defining the Product Vision and Product Roadmap 161

Chapter 9
Defining the Product
Vision and Product
Roadmap

To start, let’s dispel a common myth. If you’ve heard that agile product
development doesn’t include planning, dismiss that thought right now. You
will plan not only the overall product but also every release, every sprint,

and every day. Planning is fundamental to agile product development success.

If you’re a project manager, you probably do the bulk of your planning at the
beginning of a project. You may have heard the phrase, “Plan the work, then work
the plan,” which sums up non-agile project management approaches.

Agile product development, in contrast, involves planning up front and through-
out the entire product lifecycle. By planning at the last responsible moment, right
before an activity starts, you know the most about that activity. This type of plan-
ning, called just-in-time planning or a situationally informed strategy, is a key to
success. Scrum teams plan as much as, if not more than, traditional project teams.
However, agile planning is more evenly distributed throughout the product’s life
(see Figure 9-1) and is done by the entire team that will be working on the product.

IN THIS CHAPTER

 » Planning agile product development

 » Establishing the product vision

 » Creating features and a product
roadmap

162 PART 3 Agile Planning and Execution

Helmuth von Moltke, a nineteenth-century German field marshal and military
strategist, once said, “No plan survives contact with the enemy.” That is, in the
heat of a battle — much like in the thick of developing a product feature — plans
always change. Just-in-time planning allows you to accommodate real-world
changes non-disruptively and to be well-informed as you plan specific tasks.

This chapter describes how just-in-time planning works with agile product
development. You also go through the first two steps of planning: creating the
product vision and the product roadmap.

Agile Planning
Planning happens at a number of points. A great way to look at planning activities
is with the Roadmap to Value. Figure 9-2 shows the roadmap as a whole.

The Roadmap to Value has seven stages:

 » In stage 1, the product owner identifies the product vision. The product vision is
your product’s destination or end goal. The product vision includes the outer
boundary of what your product will be, how the product is different than the
competition, how the product will support your company or organization’s
strategy, who will use the product, and why people will use the product. The
product vision should be revisited at least once a year.

 » In stage 2, the product owner creates a product roadmap. The product roadmap
is a high-level view of the product requirements, with a general time frame for
when you will develop those requirements. It also gives context to the vision by
showing the tangible features that will be produced during development.
Identifying product requirements and then prioritizing and roughly estimating
the effort for those requirements allow you to establish requirement themes
and identify requirement gaps. The product owner, with support from the
development team, should revise the product roadmap at least biannually.

FIGURE 9-1:
Traditional

planning versus
scrum planning.

CHAPTER 9 Defining the Product Vision and Product Roadmap 163

 » In stage 3, the product owner creates a release plan. The release plan identifies
a high-level timetable for the release of working functionality to the customer.
The release serves as a mid-term boundary against which the scrum team can
mobilize. Many releases may be required to accomplish the product vision
and the highest-priority features should appear first. You create a release plan
at the beginning of each release, which according to Principle 3 should be
“frequently, from a couple of weeks to a couple of months, with a preference
to the shorter timescale." Read more about release planning in Chapter 10.

 » In stage 4, the product owner, the development team, and the scrum master
will plan iterations, also called sprints, and start creating the product function-
ality in those sprints. Sprint planning sessions take place at the start of each
sprint. During sprint planning, the scrum team determines a sprint goal, which
establishes the immediate boundary of work that the team forecasts to
accomplish during the sprint, with requirements that support the goal and
can be completed in the sprint. The scrum team also outlines how to com-
plete those requirements. Read more about sprint planning in Chapter 10.

FIGURE 9-2:
Stages of agile

planning and
execution with

the Roadmap to
Value.

164 PART 3 Agile Planning and Execution

 » In stage 5, the development team has daily scrum meetings during each sprint
to coordinate the day’s priorities for accomplishing the sprint goal. In the daily
scrum meeting, based on what was completed up to that point, you coordi-
nate what you will work on today and any roadblocks, so that you can address
issues immediately. Read about daily scrums in Chapter 11.

 » In stage 6, the scrum team holds a sprint review at the end of every sprint. In
the sprint review, you demonstrate the working product to the product
stakeholders. Find out how to conduct sprint reviews in Chapter 12.

 » In stage 7, the scrum team holds a sprint retrospective. The sprint retrospective is
a meeting where the scrum team discusses the completed sprint with regard to
their processes and environment and makes plans for process improvements in
the next sprint. Like the sprint review for inspecting and adapting the product, a
sprint retrospective is held at the end of every sprint to inspect and adapt your
processes and environment. Find out how to conduct sprint retrospectives in
Chapter 12.

Each stage of the Roadmap to Value is repeatable and contains planning activities.
Agile planning, like agile development, is iterative and barely sufficient.

Progressive elaboration
During each stage of product development, you plan only as much as you need to
plan. In the early stages of your work, you plan widely and holistically to create a
broad outline of how the product will shape up over time. In later stages, you nar-
row your planning and add more details to ensure success in the immediate devel-
opment effort. This process is called a progressive elaboration of requirements.

Planning broadly at first and in detail later, when necessary, prevents you from
wasting time on planning lower-priority product requirements that may never be
implemented. This model also lets you add high-value requirements during prod-
uct development without disrupting the flow.

The more just-in-time your detailed planning is, the more effective your planning
becomes.

Standish Group studies show that customers rarely or never use as much as
80 percent of the features in an application. In the first few development cycles of
an agile product development effort, you complete features that have the highest
priority and that people will use. Typically, you release those groups of features as
early as possible to gain market share through first-mover advantage; receive
customer feedback for viability; monetize functionality early to optimize return
on investment (ROI); and avoid internal and external obsolescence.

CHAPTER 9 Defining the Product Vision and Product Roadmap 165

Inspect and adapt
Just-in-time planning brings into play two fundamental tenets of agile tech-
niques: Inspect and adapt. At each stage of development, you need to look at the
product and the process (inspect) and make changes as necessary (adapt).

Agile planning is a rhythmic cycle of inspecting and adapting. Consider the
following:

 » Each day during the sprint, the product owner provides feedback to help
improve the product as the development team creates the product.

 » At the end of each sprint, in the sprint review, stakeholders provide feedback
to further improve the product.

 » At the end of each sprint in the sprint retrospective, the scrum team discusses
the lessons it learned during the past sprint to improve the development
process.

 » After a release, the customers can provide feedback for improvement.
Feedback might be direct, when a customer contacts the company about the
product, or indirect, when potential customers either do or don’t purchase the
product.

Together, inspect and adapt are fantastic tools for delivering the right product in
the most efficient manner.

At the beginning of development, you know the least about the product you’re
creating, so trying to plan fine details at that time just doesn’t work. Being agile
means, you do the detailed planning when you need it, and immediately develop
the specific requirements you defined with that planning. Remember the Agile
Manifesto value: “Responding to change over following a plan.”

Now that you know a little more about how agile planning works, it’s time to
complete the first step: defining the product vision.

Defining the Product Vision
The first stage in the Roadmap to Value is defining your product vision. The prod-
uct vision statement is an elevator pitch, or a quick summary, to communicate how
your product supports the company’s or organization’s strategies. The vision
statement must articulate the end state for the product.

166 PART 3 Agile Planning and Execution

The product might be a commercial product for release to the marketplace or an
internal solution that will support your organization’s day-to-day functions. For
example, say your company is XYZ Bank and your product is a mobile banking
application. What company strategies does a mobile banking application support?
How does the application support the company’s strategies? Your vision state-
ment clearly and concisely links the product to your business strategy. As well-
known author and spokesperson Simon Sinek explains, this is your “Why.”

Figure 9-3 shows how the vision statement — stage 1 of the Roadmap to Value —
fits with the rest of the stages and activities in product development.

The product owner is responsible for knowing about the product, its goals, and its
requirements throughout development. For those reasons, the product owner cre-
ates the vision statement, although other people may have input. After the vision
statement is complete, it becomes a guiding light, the “what we are trying to
achieve” statement that the product owner, development team, scrum master,
and stakeholders refer to throughout their work.

When creating a product vision statement, follow these four steps:

1. Develop the product objective.

2. Create a draft vision statement.

3. Validate the vision statement with product stakeholders and revise it
based on feedback.

4. Finalize the product vision statement.

The look of a vision statement follows no hard-and-fast rules. However, anyone
involved, from the development team to the CEO, should be able to understand the
statement. The vision statement should be internally focused, clear, nontechnical,
emotionally connecting, and as brief as possible. The vision statement should also
be explicit and avoid marketing jargon.

FIGURE 9-3:
The product

vision statement
as part of the
Roadmap to

Value.

CHAPTER 9 Defining the Product Vision and Product Roadmap 167

Step 1: Developing the product objective
To write your vision statement, you must understand and be able to communicate
the product’s objective. You need to identify the following:

 » Key product goals: How will the product benefit the company that is creating it?
The goals may include benefits for a specific department in your company, such
as customer service or the marketing department, as well as the company as a
whole. What specific company strategies does the product support? The product
canvas discussed in Chapter 4 is helpful for defining product goals.

 » Customer: Who will use the product? This question might have more than
one answer.

 » Need: Why does the customer need the product? What features are critical to
the customer? What problem will the product solve, as discussed in Chapter 4?

 » Competition: How does the product compare with similar products?

 » Primary differentiation: What makes this product different from the status
quo or the competition or both?

Step 2: Creating a draft vision statement
After you have a good grasp of the product’s objective, create a first draft of your
vision statement.

You can find many templates for a product vision statement. For an excellent
guide to defining the overall product vision, see Crossing the Chasm, by Geoffrey
Moore (published by HarperCollins), which focuses on how to bridge the gap
(chasm) between early adopters of new technologies and the majority who follow.

The adoption of any new product is a gamble. Will users like the product? Will the
market take to the product? Will there be an adequate return on investment for
developing the product? An effectively written product vision statement can start
you on the path to quickly learning the answers to these questions.

Return on investment, or ROI, is the benefit or value a company gets from paying for
something. ROI can be quantitative, such as the additional money ABC Products
makes from selling widgets online after investing in a new website. ROI can also
be something intangible, such as better customer satisfaction for XYZ Bank cus-
tomers who use the bank’s new mobile banking application.

168 PART 3 Agile Planning and Execution

By creating your vision statement, you help convey your product’s quality, main-
tenance needs, and longevity.

Moore’s product vision approach is pragmatic. In Figure 9-4, we construct a tem-
plate based on Moore’s approach to more explicitly connect the product to the
company’s strategies. If you use this template for your product vision statement,
it will stand the test of time as your product goes from early adoption to main-
stream usage.

One way to make your product vision statement more compelling is to write it in
the present tense, as if the product already exists. Using present tense helps read-
ers imagine the product in use.

Using our expansion of Moore’s template, a vision statement for a mobile banking
application might look like the following:

For XYZ Bank customers

who want access to banking capability while on the go,

the MyXYZ

is a mobile application

that allows secure, on-demand banking, 24 hours a day.

Unlike online banking from your home or office computer,

our product allows users immediate access,

which supports our strategy to provide quick, convenient banking services,
anytime, anywhere. (Platinum Edge addition)

FIGURE 9-4:
Expansion of

Moore’s template
for a vision
statement.

CHAPTER 9 Defining the Product Vision and Product Roadmap 169

As you can see, a vision statement identifies a future state for the product when
the product reaches completion. The vision focuses on the conditions that should
exist when the product is complete.

Avoid generalizations in your vision statement such as “make more money” or
“make customers happy” or “sell more products.” You want the vision statement
to help you make scope decisions throughout product development. Also watch
out for too much technological specificity, such as “using release 9.x of Java, cre-
ate a program with four modules that . . .” At this early stage, defining specific
technologies might limit you later.

Here are a few extracts from vision statements that should ring warning bells:

 » Secure additional customers for the MyXYZ application.

 » Satisfy our customers by December.

 » Eliminate all defects and improve quality.

 » Create a new application in Java.

 » Beat the Widget Company to market by six months.

Step 3: Validating and revising
the vision statement
After you draft your vision statement, review it against the following quality
checklist:

 » Is this vision statement clear, focused, and written for an internal audience?

 » Does the statement provide a compelling description of how the product
meets customer needs?

 » Does the vision describe the best possible outcome?

 » Is the business objective specific enough that the goal is achievable?

 » Does the statement deliver value that is consistent with corporate strategies
and goals?

 » Is the vision statement compelling?

 » Is the vision concise?

These yes-or-no questions will help you determine whether your vision state-
ment is thorough. If any answers are no, revise the vision statement.

170 PART 3 Agile Planning and Execution

When all answers are yes, move on to reviewing the statement with others,
including the following:

 » Product stakeholders: The stakeholders will be able to identify that the
vision statement includes everything the product should accomplish.

 » Your development team: The people who will be creating the product must
also understand and have ownership of what the product needs to accom-
plish. Many product owners create the product vision with the development
team, aligning purpose and motivation (Principle 5).

 » Scrum master: A strong understanding of the product will help the scrum
master proactively remove roadblocks, enabling the team to accomplish the
product vision.

 » Agile mentor: Share the vision statement with your agile mentor, if you have
one. The agile mentor is independent of the organization and can provide an
external perspective, qualities that can make for a great objective voice.

See whether others think the vision statement is clear and delivers the message
you want to convey. Review and revise the vision statement until the stakeholders,
development team, and scrum master fully understand the statement.

Step 4: Finalizing the vision statement
After you finish revising the vision statement, make sure the development team,
scrum master, and stakeholders have the final copy. You might even put a copy on
the wall in the scrum team’s work area, where you can see it every day. You will
refer to the vision statement throughout the life of the product.

If your product development will be more than a year long, you may want to
revisit the vision statement. Review the product vision statement at least once a
year to make sure the product reflects the marketplace and supports any changes
in the company’s needs. Because the vision statement is the long-term boundary
of the product, product development investment should end when the vision is
achieved and expansion of the vision is no longer viable.

The product owner owns the product vision statement and is responsible for its
preparation and communication across and outside the organization. The product
vision sets expectations for stakeholders and helps the development team stay
focused on the goal.

Congratulations. You’ve just completed the initial definition of strategy and
desired value outcome in your agile product development. Now it’s time to create
a product roadmap.

CHAPTER 9 Defining the Product Vision and Product Roadmap 171

Creating a Product Roadmap
The product roadmap, stage 2 in the Roadmap to Value (see Figure 9-5), is an
overall view of the product’s requirements and a valuable tool for planning and
organizing the journey of product development. Use the product roadmap to cat-
egorize requirements, prioritize them, identify gaps and dependencies, and deter-
mine a sequence for releasing to the customer.

As with the product vision statement, the product owner creates the product road-
map with help from the development team and stakeholders. The development
team often participates to a greater degree than it did during the creation of the
vision statement.

Keep in mind that you will refine requirements and effort estimates throughout
development. In the product roadmap phase, it’s okay for your requirements
detail, estimates, and time frames to be at a very high level.

To create your product roadmap, you do the following:

1. Identify stakeholders.

2. List product requirements and visualize them.

3. Arrange the product requirements based on value, risk, and
dependencies.

4. Estimate the development effort at a high level and prioritize the
product’s requirements.

5. Determine high-level time frames for releasing groups of functionality to
the customer.

Because priorities can change, plan to update your product roadmap at least twice
a year.

FIGURE 9-5:
The product

roadmap as part
of the Roadmap

to Value.

172 PART 3 Agile Planning and Execution

Your product roadmap can be as simple as sticky notes arranged on a physical or
virtual whiteboard, which makes updates as easy as moving a sticky note from one
section of the whiteboard to another.

You use the product roadmap to plan releases — stage 3 in the Roadmap to Value.
Releases are groups of usable product functionality that you release to customers
to gather real-world feedback and to generate return on investment.

The following section details the steps to create a product roadmap.

Step 1: Identifying product stakeholders
When initially establishing the product vision, it’s likely you will have identified
only a few key stakeholders who are available to provide high-level feedback. At
the product roadmap stage, you put more context to the product vision and iden-
tify how you achieve the vision, which gives more insight into who will have a
stake in your product.

This is the time to engage with existing and newly identified stakeholders to
gather feedback on the functionality you want to implement to achieve the vision.
The product roadmap is your first cut at a high-level product backlog, discussed
later in this chapter. With this first round of detail identified, you’ll want to engage
more than just the scrum team, the product sponsor, and obvious users. Consider
including the following people:

 » Marketing department: Your customers need to know about your product,
and that’s what the marketing department provides. They need to understand
your plans and may have input into the order in which you release functional-
ity to the market, based on their experience and research.

 » Customer service department: Once your product is in the market, how will
it be supported? Specific roadmap items might identify the person you’ll need
to prepare for support. For instance, a product owner may not see much
value in plugging in a live online chat feature, but a customer service manager
may see it differently because his or her representatives can handle simulta-
neously only one phone call but as many as six chat sessions. Plus, your
customer service representatives actually talk to your end users on a daily
basis and probably have many insights you should consider.

 » Sales department: Make sure that the sales team sees the product so that it
starts selling the same thing you’re building. Like the marketing department,
the sales department will have first-hand knowledge about what your
customers are looking for.

CHAPTER 9 Defining the Product Vision and Product Roadmap 173

 » Legal department: Especially if you’re in a highly regulated industry, review
your roadmap with legal counsel as early as possible to make sure you haven’t
missed anything that could put your product at risk if discovered later.

 » Additional customers: While identifying features on your roadmap, you may
discover additional people who will find value in what you will create. Give
them a chance to review your roadmap to validate your assumptions.

Step 2: Establishing product requirements
The second step in creating a product roadmap is to identify, or define, the differ-
ent requirements for your product.

When you first create your product roadmap, you typically start with large, high-
level requirements. The requirements on your product roadmap will most likely be
at two different levels: themes and features. Themes are logical groups of features
and requirements at their highest levels. Features are parts of the product at a very
high level and describe a new capability the customer will have once the feature is
complete.

DECOMPOSING REQUIREMENTS
Throughout product development, you’ll break down requirements into smaller, more
manageable parts using a process called decomposition, or progressive elaboration. You
can break down requirements into the following sizes, listed from largest to smallest:

• Themes: A theme is a logical group of features and is also a requirement at its high-
est level. You may group features into themes in your product roadmap.

• Features: Features are parts of products at a very high level. Features describe a
new capability the customers will have once the feature is complete. You use fea-
tures in your product roadmap.

• Epic user stories: Epics are medium-sized requirements that are decomposed from
a feature and often contain multiple actions or channels of value. You need to
break down your epics before you can start creating functionality from them. You
can find out how you use epics for release planning in Chapter 10.

(continued)

174 PART 3 Agile Planning and Execution

When you start creating requirements at the theme and feature level, it can help
to write those requirements on index cards or big sticky notes. Using a physical
card that you can move from one category to another and back again can make
organizing and prioritizing those requirements very easy.

• User stories: User stories are requirements that contain a single action or integra-
tion and are small enough to start implementing into functionality. You see how
you define user stories and use them at the release and sprint level in Chapter 10.

• Tasks: Tasks are the execution steps required to develop a requirement into work-
ing functionality and generally mirror your definition of done as well as the tasks
necessary to accomplish the story’s acceptance criteria. You can find out about
tasks and sprint planning in Chapter 10.

Keep in mind that each requirement may not go through all these sizes. For example,
you may create a particular requirement at the user story level, and never think of it on
the theme or epic scale. You may create a requirement at the epic user story level, but it
may be a lower-priority requirement. Because of just-in-time planning, you may not
take the time to decompose that lower-priority epic user story until you complete devel-
opment of all the higher-priority requirements.

To identify product themes and features, the product owner can work with stakehold-
ers and the development team. It may help to have a product discovery workshop,
where the stakeholders and the development team meet and write down as many
requirements as possible. Each item should be written in the customer’s words rather
than using technical jargon. For example, you might begin each item with the words,
“My customer can now . . .” to reinforce how the requirements should relate to the cus-
tomer, their problem, and the product vision. For example:

My customer can now

See her account balance

Pay bills

See her latest transactions

Provide feedback

Get help

(continued)

CHAPTER 9 Defining the Product Vision and Product Roadmap 175

While you create the product roadmap, the features you identify start to make up
your product backlog — the full list of what is in scope for a product, regardless of
level of detail. Once you have identified your first product features, you have your
product backlog started.

Step 3: Arranging product features
After you identify your product features, you work with the stakeholders to group
them into themes — common, logical groups of features. A stakeholder meeting
works well for grouping features, just like it works for creating requirements. You
can group features by usage flow, technical similarity, or business need.

Visualizing themes and features on your roadmap allow you to assign business
value and risks associated with each feature relative to others. The product owner,
along with the development team and stakeholders, can also identify dependen-
cies between features, locate any gaps, and prioritize the order in which each
feature should be developed based on each of these factors.

Here are questions to consider when grouping and ordering your requirements:

 » How would customers use our product?

 » If we offered this requirement, what else would customers need to do? What
else might they want to do?

 » Can the development team identify technical affinities or dependencies?

Use the answers to these questions to identify your themes. Then group the fea-
tures by these themes. For example, in the mobile banking application, the themes
might be

 » Account information

 » Transactions

 » Customer service functions

 » Integration with other accounts

Figure 9-6 shows features grouped by themes.

176 PART 3 Agile Planning and Execution

Step 4: Estimating efforts and ordering
requirements
You’ve identified your product requirements and arranged those requirements
into logical groups. Next, you estimate and prioritize the requirements. Here are a
few terms you need to be familiar with:

 » Effort is the ease or difficulty of creating functionality from a particular
requirement.

 » An estimate, as a noun, can be the number or description you use to express
the estimated effort of a requirement.

 » Estimating a requirement, as a verb, means to come up with an approximate
idea of how easy or hard (how much effort) that requirement will be to create.

 » Ordering, or prioritizing, a requirement means to determine that requirement’s
value and risk in relation to other requirements, and in what order you will
implement them.

FIGURE 9-6:
Features grouped

by themes.

CHAPTER 9 Defining the Product Vision and Product Roadmap 177

 » Value means how beneficial a product requirement might be to the customer
and therefore the organization creating that product.

 » Risk refers to the negative effect a requirement can have due to customer
uncertainty or on product development.

You can estimate and prioritize requirements of any estimate size at any level,
from themes and features down to single user stories.

Prioritizing requirements is really about ordering them. You can find various
methods — many of them complicated — for determining the priority of product
backlog items. We keep things simple by creating an ordered to-do list of product
backlog items based on business value, risk, and effort, listed in the order in which
we will implement them. Forcing an order requires making a priority decision for
every requirement relative to every other requirement. A scrum team works on
one thing at a time, so it’s important to format your product roadmap accordingly.
In Chapter 13, additional prioritization techniques are discussed.

To estimate and assign effort values to your requirements, you work with two dif-
ferent groups of people:

 » The development team determines the effort to implement the functionality
for each requirement. Only the people who will do the work should provide
effort estimates. The development team also provides critical feedback to the
product owner for understanding how technical risks affect the ordering of
the product backlog.

 » The product owner, with support from the stakeholders, determines the value
and risk of the requirement to the customer and the business.

Estimating effort
To order requirements, the development team must first estimate the effort for
each requirement relative to all other requirements.

In Chapter 10, we show you relative estimation techniques that scrum teams use
to accurately estimate effort. Traditional estimation methods aim for precision by
using absolute time estimates at every level of the project schedule, whether the
team is working on the work items today or two years from now. This practice
gives traditional teams a false sense of precision and isn’t accurate in reality (as
thousands of failed projects prove). How could you possibly know what each team
member will be working on six months from now, and how long it will take to do
that work, when you are just starting to learn about the product at the beginning?

178 PART 3 Agile Planning and Execution

Relative estimating is a self-correcting mechanism that allows scrum teams to be
more accurate because it’s much easier to be right when comparing one require-
ment against another and determining whether one is bigger than another, and by
roughly how much. Product development teams value accuracy over precision.

To order your requirements, you also want to know any dependencies. Dependen-
cies mean that one requirement is a predecessor for another requirement. For
example, if you have an application that requires users to set up a user profile,
they’ll need to be authenticated by a username and password. The requirement for
creating the username and password would be dependent on setting up a profile
because you generally need a username and password to establish a user profile.

Assessing business value and risk
Together with stakeholders, the product owner identifies the highest business
value items (either high potential ROI or other perceived value to the end cus-
tomer), as well as those items with high negative effect if unresolved.

Similar to effort estimates, values or risks can be assigned to each product road-
map item. For example, you might assign value using monetary ROI amounts or,
for an internally used product, assign value or risk by using high, medium, or low.

Effort, business value, and risk estimates inform the product owner’s prioritiza-
tion decisions for each requirement. The highest value and risk items should be at
the top of the product roadmap. High-risk items should be explored and imple-
mented first to avoid rear-loading the risk. If a high-risk item will cause the
product or its development to fail (an issue that cannot be resolved), scrum teams
learn about it early. If something is going to fail, you want to fail early, fail cheap,
and move on to a new opportunity that has value. In that sense, failure is a form
of success for a scrum team.

After you have your value, risk, and effort estimates, you can determine the rela-
tive priority, or order, of each requirement.

 » A requirement with high value or high risk (or both) and low effort will have a
high relative priority. The product owner might order this item at the top of
the roadmap.

 » A requirement with low value or low risk (or both) and high effort will have a
lower relative priority. This item will likely end up towards the bottom of the
roadmap or, better yet, be removed. If anything on your roadmap does not
support the fulfillment of your product vision, you may want to ask whether it
is truly needed. Remember Principle 10, “Simplicity — the art of maximizing
the amount of work not done — is essential.”

CHAPTER 9 Defining the Product Vision and Product Roadmap 179

Relative priority is only a tool to help the product owner make decisions and pri-
oritize requirements. It isn’t a mathematical universal that you must follow. Make
sure your tools help rather than hinder.

Prioritizing requirements
To determine the overall priority for your requirements, answer the following
questions:

 » What is the relative priority of the requirement?

 » What are the prerequisites for any requirement?

 » What set of requirements belong together and will constitute a solid set of
functionalities you can release to the customer?

Using the answers to these questions, you can place the highest-priority require-
ments first in the product roadmap. When you’ve finished prioritizing your
requirements, you’ll have something that looks like Figure 9-7.

Your prioritized list of requirements is called a product backlog. Your product back-
log is an important agile document, or artifact. You use this backlog throughout
your entire product development.

FIGURE 9-7:
Product roadmap

with ordered
requirements.

180 PART 3 Agile Planning and Execution

With a product backlog in hand, you can start adding target releases to your prod-
uct roadmap.

Step 5: Determining high-level time frames
When you create your product roadmap, your time frames for releasing product
requirements are at a very high level. For the initial roadmap, choose a logical
time increment for your product development, such as a certain number of days,
weeks, months, quarters (three-month periods), or even larger increments. Using
both the requirement and the priority, you can add requirements to each incre-
ment of time.

Creating a product roadmap might seem like a lot of work, but every team we’ve
worked with has a product vision, product roadmap, and release plan for its first
release, and is ready to start its sprint in as little as two to three days! To begin
developing the product, you need only enough requirements for your first sprint.
Having bought yourself some time, you can determine the rest as the team learns
more from reality through progressive elaboration.

Saving your work
Up until now, you could do all your roadmap planning with whiteboards and sticky
notes. After your first full draft is complete, however, save the product roadmap,
especially if you need to share the roadmap with remote stakeholders or develop-
ment team members. You could take a photo of your sticky notes and whiteboard,
or you could type the information into a document and save it electronically.
Whatever format you choose, ensure that the roadmap can be easily changed and
transparently accessed.

You update the product roadmap throughout development, as priorities change.
For now, the contents of the first release should be clear — and that’s all you need
to worry about to start executing and delivering value.

Completing the Product Backlog
The product roadmap contains high-level features and some tentative release
timelines. The requirements on your product roadmap are the first version of your
product backlog.

CHAPTER 9 Defining the Product Vision and Product Roadmap 181

The product backlog is the list of all requirements associated with the product.
The product owner is responsible for creating and maintaining the product back-
log by updating (adding, changing, removing) and prioritizing requirements. The
scrum team uses the prioritized product backlog throughout development to plan
its work each release and each sprint.

Figure 9-8 shows a sample product backlog. At a minimum, when creating your
product backlog, be sure to do the following:

 » Include a description of your requirement.

 » Order the requirements based on priority.

 » Add the effort estimate.

We also like to include the type of backlog item as well as the status. Teams will
work mainly on developing features as described in the words of the user (user
stories). But there may be a need for other types of product backlog items, such as
overhead items (things the team determines are needed but don’t contribute to
the functionality), maintenance items (design improvements that need to be done
to the product or system but don’t directly increase value to the customer), or
improvement items (action items for process improvements identified in the
sprint retrospective). You can see examples of each of these in Figure 9-8. The
product owner prioritizes all product backlog items through the lens of the cus-
tomer and stakeholders.

In Chapter 2, we explain how documents for agile product development should be
barely sufficient, with only information that is absolutely necessary to create the
product. If you keep your product backlog format simple and barely sufficient,
you’ll save time updating it throughout product development.

FIGURE 9-8:
Product backlog

items sample.

182 PART 3 Agile Planning and Execution

The scrum team refers to the product backlog as the main source for require-
ments. If a requirement exists, it’s in the product backlog.

The user stories in your product backlog will change throughout development in
several ways. For example, as the team completes user stories, you mark those
stories as complete in the backlog. You also record any new user stories. Some
user stories will be updated with new or clarified information, broken down into
smaller user stories, or refined in other ways. Additionally, you update the priority
and effort scores of existing user stories as needed.

The total number of story points in the product backlog — all user story points
added together — is your current product backlog estimate. This estimate changes
daily as user stories are completed and new user stories are added. See Chapter 15
for more about using the product backlog estimate to predict the release length
and cost.

Keep your product backlog up to date so that you always have accurate cost and
schedule estimates. A current product backlog also gives you the flexibility to pri-
oritize newly identified product requirements — a key agile benefit — against
existing features.

After you have a product backlog, you can begin planning releases and sprints,
which we describe in the next chapter.

CHAPTER 10 Planning Releases and Sprints 183

Chapter 10
Planning Releases
and Sprints

After you create a product roadmap for your product (see Chapter 9) it’s
time to start elaborating on your product details. In this chapter, you dis-
cover how to break down your requirements to a more granular level,

refine your product backlog, create a release plan, and build a sprint backlog for
execution. We also discuss how to prepare the rest of the organization for the
release, including operational support, and ensuring that the marketplace will be
ready for your release.

First, you see how to break down the larger requirements from your product road-
map into smaller, more manageable requirements called user stories.

Refining Requirements and Estimates
You start agile development with very large requirements. As the work progresses
and you get closer to developing those requirements, you will break them down
into smaller parts — small enough to begin developing. See Chapter 9 for more
about this process, which is known as decomposition.

IN THIS CHAPTER

 » Decomposing requirements and
creating user stories

 » Creating a product backlog, release
plan, and sprint backlog

 » Getting the product ready to ship and
preparing the rest of the organization
for the release

 » Making sure the marketplace is ready

184 PART 3 Agile Planning and Execution

One clear, effective pattern for defining product requirements is the user story. In
this section, you find out how to create a user story, prioritize user stories, and
estimate user story effort.

What is a user story?
The user story is a simple description of a product requirement in terms of what
that requirement must accomplish for whom. It’s called a story because the sim-
plest way people tell stories is by talking to each other. User stories are most
effective when they’re told by speaking to each other face-to-face. The written
pattern described in this section can be used to help with that conversation.

Traditional software requirements usually read something like this: “The system
shall [insert technical description].” This requirement addresses only the techni-
cal nature of what will be done; the overall business objective is unclear. Because
the development team has the context to engage more deeply through the user
story pattern, its work becomes more personal and real. The team comes to know
the benefit of each requirement to the user (or the customer or the business) and
delivers what the customer wants faster and with higher quality.

Your user story will have, at a minimum, the following parts:

Title (recognizable name for the user story)

As a (type of user)

I want to (take this action)

so that (I get this benefit)

The user story tells the “who,” “what,” and “why” for the desired functionality.
The user story should also be supported by a list of validation steps (acceptance
criteria) to take so you can confirm whether the working requirement for the user
story is correct. Acceptance criteria follows this pattern:

When I (take this action), (this happens)

User stories may also include the following:

 » A user story ID: A unique identifying number to differentiate this user story
from other user stories in the product backlog tracking system.

 » The user story value and effort estimate: Value is how beneficial a user
story might be to the organization creating that product. Effort is the ease or
difficulty in creating that user story. We introduce how to score a user story’s
business value, risk, and effort in Chapter 9.

CHAPTER 10 Planning Releases and Sprints 185

 » The name of the person who thought of the user story: Anyone can create
a user story.

Although agile product development approaches encourage low-tech tools, the
scrum team should also find out what works best in each situation. A lot of elec-
tronic user story tools are available, some of which are free. Some are simple and
are only for user stories. Others are complex and will integrate with other product
documents. We love the simplicity of index cards, but use what works best for
your scrum team and your product.

Figure 10-1 shows a typical user story card, front and back. The front has the main
description of the user story. The back shows how you will confirm that the
requirement works correctly, after the development team has created the
functionality.

The three Cs formula for user story creation — card, conversation, and
 confirmation — illustrates how the user story pattern enables scrum teams to
create customer value. By limiting user stories to fit on a 3x5 index card, we
encourage a conversation for achieving a shared understanding of the job to be
done for the customer (rather than excessive documentation that implies nothing
is left to discuss). If the conversation is supported by the answers to the quiz
up front (acceptance criteria that is a confirmation that the actions the user will
take meet the intended needs), you’re probably on the right track.

The product owner gathers the user stories and manages them (that is, deter-
mines the priority and initiates the decomposition discussions). It is not the sole
responsibility of the product owner to write user stories. The development team
and other stakeholders are also involved in creating and decomposing user stories
to ensure clarity and shared understanding across the scrum team.

FIGURE 10-1:
Card-based user

story example.

186 PART 3 Agile Planning and Execution

Note that user stories aren’t the only way to describe product requirements. You
could simply make a list of requirements without any given structure. However,
because user stories include a lot of useful information in a simple, compact for-
mat, we find that they’re very effective in conveying exactly what a requirement
needs to do for the customer.

The big benefit of the user story pattern is realized when the development team
starts to create and test requirements. The development team members know
exactly for whom they are creating the requirement, what the requirement should
do, and how to double-check that the requirement satisfies its intention. Using
the user’s voice is something all can understand and relate to — not so much with
technical jargon.

We use user stories as examples of requirements for software product develop-
ment throughout the chapter and the book. Keep in mind that anything we
describe that you can do with user stories, you can do also with more generically
expressed requirements and other product types.

Steps to create a user story
When creating a user story, follow these steps:

1. Identify the stakeholders.

2. Identify who will use the product.

3. Working with the stakeholders, write down, in a user story format, what
the product will need to do.

Find out how to follow these three steps in the following sections.

Being agile and adaptive requires iterating. Don’t spend a ton of time trying to
identify every single requirement your product might have. You can always add
items to your product backlog later. The best changes often come at the end, when
you know the most about the product and the end-customers.

Identifying product stakeholders
You probably have a good idea about who your stakeholders are — anyone involved
with, affected by, or who can affect the product and its creation. Stakeholders pro-
vide valuable feedback about every product increment you deliver each sprint.

You will work with stakeholders also when you create the product vision and
product roadmap.

CHAPTER 10 Planning Releases and Sprints 187

Make sure the stakeholders are available to help you gather and write product
backlog items. Stakeholders of the sample mobile banking application introduced
in Chapter 9 might include the following:

 » People who interact with customers on a regular basis, such as customer
service representatives or bank branch personnel.

 » Business experts for the different areas where your product’s customers
interact. For example, XYZ Bank might have one manager in charge of
checking accounts, another manager in charge of savings accounts, and a
third manager in charge of online bill payment services. If you’re creating a
mobile banking application, all these people would be stakeholders.

 » Users of your product.

 » Experts of the type of product you’re creating. For example, a developer who
has created mobile applications, a marketing manager who knows how to
create mobile campaigns, and a user experience specialist who specializes in
mobile interfaces all might be helpful on the sample XYZ Bank mobile banking
product.

 » Technical stakeholders. These are people who work with the systems that
might need to interact with your product.

Identifying users
As discussed in Chapter 4, agile product development is customer focused. Build-
ing on the personas you’ve defined, your understanding of their needs, and the
problems to be solved helps the team more clearly understand the product require-
ments. Knowing who your end users are and how they will interact with your
product drives how you define and implement each item on your product roadmap.

With your product roadmap visualized, you can identify each type of user. For the
mobile banking application, you would have individual and business bankers. The
individual categories would include youth, young adults, students, and single,
married, retired, and wealthy users. Businesses of all sizes might be represented.
Employee users would include tellers, branch managers, account managers, and
fund managers. Each type of user will interact with your application in different
ways and for different reasons. Knowing who these people are enables you to bet-
ter define the purpose and desired benefits of each of their interactions.

We like to define users using personas, or a written description about a type of user
represented by a hypothetical person. For instance, “Ellen is a 65-year-old retired
engineer who is spending her retirement traveling the world. Her net worth is
$1,000,000, and she has residual income from several investment real estate
properties.” Read more about personas in Chapter 4.

188 PART 3 Agile Planning and Execution

Ellen represents 30 percent of XYZ Bank’s customers, and a good portion of the
product roadmap includes features that someone like Ellen will use. Instead of
repeating all the details about Ellen every time the scrum team discusses these
features, the team can simply refer to the type of user as Ellen. The product owner
might identify several personas, as needed, and will even print the descriptions
with a stock photo of what Ellen might look like and post them on the wall in the
team’s work area to refer to throughout development.

Know who your users are, so you can develop features they’ll actually use.

Suppose that you’re the product owner for the XYZ Bank’s mobile banking
product. You’re responsible for the department that will bring the product to
market, preferably in the next six months. You have the following ideas about the
application’s users:

 » The customers (the end users of the application) probably want quick access
to up-to-date information about their balances and recent transactions.

 » Maybe the customers are about to buy a large-ticket item, and they want to
make sure they can charge it.

 » Maybe the customers’ ATM cards were just refused, but they have no idea
why, and they want to check recent transactions for possible fraudulent
activities.

 » Maybe the customers just realized that they forgot to pay their credit card bill
and will have penalty charges if they don’t pay the card today.

Who are your personas for this application? Here are a few examples:

 » Persona #1: Jason is a young, tech-savvy executive who travels a lot. When
he has a spare moment, he wants to handle personal business quickly. He
carefully invests his money in high-interest portfolios. He keeps his availa-
ble cash low.

 » Persona #2: Carol is a small-business owner who stages properties when
clients are trying to sell their home. She shops at consignment centers and
often finds furnishings she wants to buy for her clients.

 » Persona #3: Nick is a student who lives on student loans and a part-time job.
He knows he can be flaky with money because he’s flaky with everything else.
He just lost his checkbook.

Your product stakeholders can help you create personas. Find people who are
experts on the day-to-day business for your product. Those stakeholders will
know a lot about your potential customers.

CHAPTER 10 Planning Releases and Sprints 189

Determining product requirements
and creating user stories
After you have identified your different users, you can start to determine product
requirements and create user stories for the personas. A good way to create user
stories is to bring your stakeholders together for a product discovery workshop.
See more about product discovery workshops in Chapter 4.

Have the stakeholders write down as many requirements as they can think of,
using the user story format. One user story for the product and personas from the
previous sections might be as follows:

 » Front side of card:

• Title See bank account balance

• As Jason,

• I want to see my checking account balance on my smartphone

• so that I can decide whether I have enough money in my account to make
a transaction

 » Back side of card:

• When I sign into the XYZ Bank mobile application, my checking account
balance appears.

• When I sign into the XYZ Bank mobile application after making a purchase
or a deposit, my checking account balance reflects that purchase or
deposit.

You can see sample user stories in card format in Figure 10-2.

Be sure to continuously add and prioritize new user stories to your product back-
log. Keeping your product backlog up-to-date will help you have the highest-
priority user stories when it is time to plan your sprint.

You will create new user stories throughout product development. You’ll also take
existing large requirements and decompose them until they’re manageable
enough to work on during a sprint.

190 PART 3 Agile Planning and Execution

Breaking down requirements
You refine requirements many times throughout development. For example:

 » When you create the product roadmap (see Chapter 9), you create features
(capabilities your customers will have after you develop the features), as well
as themes (logical groups of features). Although features are intentionally
large, we require features at the product roadmap level to be no larger than
144 story points on the Fibonnaci scale (see the “Estimation poker” section
later in the chapter to learn about Fibonacci sizing). Both features and themes
are considered large by a development team.

 » When you plan releases, you break down the features into more concise user
stories. User stories at the release plan level can be either epics, very large
user stories with multiple actions, or individual user stories, which contain a
single action. For our clients, user stories at the release plan level should be
no larger than 34 story points. You find out more about releases later in this
chapter.

 » When you plan sprints, you break down requirements even further. User
stories are broken down to eight points or fewer. See Figure 10-3 for a helpful
requirement decomposition guide.

FIGURE 10-2:
Sample user

stories.

CHAPTER 10 Planning Releases and Sprints 191

To decompose requirements, you’ll want to think about how to break down the
requirement into individual actions. Table 10-1 shows a requirement from the XYZ
Bank application introduced in Chapter 9 that is decomposed from the theme level
down to the user story level.

FIGURE 10-3:
User story

decomposition
guidelines.

TABLE 10-1 Decomposing a Requirement
Requirement Level Requirement

Theme See bank account data on a mobile device.

Features See account balances.

See a list of recent withdrawals or purchases.

See a list of recent deposits.

See my upcoming automatic bill payments.

See my account alerts.

Epic user stories — decomposed from
“see account balances”

See checking account balance.

See savings account balance.

See loan balance.

See investment account balance.

See retirement account balance.

User stories — decomposed from “see
checking account balance”

See a list of my accounts once securely logged in.

Select and view my checking account.

See account balance changes after withdrawals.

See account balance changes after purchases.

See day’s end account balance.

See available account balance.

Change account view.

192 PART 3 Agile Planning and Execution

Estimation poker
As you refine your requirements, you need to refine your estimates of the work
required to complete your user stories as well. It’s time to have some fun!

One of the most popular ways of estimating user stories is by playing estimation
poker, sometimes called planning poker, a game to determine user story size and to
build consensus among the development team members.

The scrum master can help coordinate estimation, and the product owner can
provide information about features, but the development team is responsible for
estimating the level of effort required for the user stories. After all, the develop-
ment team has to do the work to create the features that these stories describe.

To play estimation poker, you need a deck of cards like the one in Figure 10-4.
You can get a digital version online at our website (www.platinumedge.com/
estimationpoker), or you can make your own with index cards and markers. The

USER STORIES AND THE INVEST APPROACH
You may be asking, just how decomposed does a user story have to be? Bill Wake, in his
blog at XP123.com, describes the INVEST approach to ensure quality in user stories. We
like his method so much we include it here.

Using the INVEST approach, user stories should be

• Independent: To the extent possible, a user story should need no other user sto-
ries to implement the feature that the story describes.

• Negotiable: Not overly detailed. The user story has room for discussion and an
expansion of details.

• Valuable: The user story demonstrates product value to the customer. It describes
features, not technical tasks to implement it. The user story is in the user’s language
and is easy to explain. The people using the product or system can understand the
user story.

• Estimable: The story is descriptive, accurate, and concise, so the developers can
generally estimate the work necessary to create the functionality in the user story.

• Small: It is easier to plan and accurately estimate small user stories. A good rule of
thumb is that the development team can complete 6-10 user stories in a sprint.

• Testable: You can easily validate the user story, and the results are definitive.

CHAPTER 10 Planning Releases and Sprints 193

numbers on the cards are from the Fibonacci sequence, which follows this
progression:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on

If we start with the numbers 1 and 2, each subsequent number in the Fibonacci
sequence is derived by taking the sum of the previous two numbers.

Each user story receives an estimate relative to other user stories. For instance, a
user story that is a 5 requires more effort than a 3, a 2, and a 1. It is about 5 times
as much effort as a 1, more than double the effort of a 2, and roughly the amount
of effort as a 3 and a 2 combined. It is not as much effort as an 8, but is just over
half the effort of an 8.

As user stories and epic user stories increase in size, the difference between Fibo-
nacci numbers gets bigger. Acknowledging these increasing gaps in precision for
larger requirements is why the Fibonacci sequence works so well for relative
estimation.

To play estimation poker, follow these steps:

1. Provide each member of the development team with a deck of estima-
tion poker cards.

2. From the list of user stories presented by the product owner, the team
agrees on one user story that would be a 5.

This user story is the anchor user story for the team. The scrum master helps the
development team reach consensus by using a fist of five or thumbs up/thumbs
down (as described in Chapter 7), with discussion until everyone agrees on a
user story that represents an estimate of 5.

3. The product owner reads a high-priority user story to the players.

FIGURE 10-4:
A deck of

estimation poker
cards.

194 PART 3 Agile Planning and Execution

4. Each player selects a card representing his or her estimate of the effort
involved in the user story and lays the card facedown on the table.

You don’t want the players to see each other’s cards until all cards have been
played. This limits how much one player can influence others to vote a certain
way. The players should compare the user story to other user stories they have
estimated. (The first time through, the players compare the user story to only
the anchor story.)

5. All players turn over their cards simultaneously.

6. If the players have different story points:

a. It’s time for discussion.

Discussion is the value-add of estimation poker, which enables team
alignment and consensus. The players with the highest and lowest scores
talk about their assumptions and why they think the estimate for the user
story should be higher or lower, respectively. The players compare the
effort for the user story against the anchor story. The product owner
provides more clarification about the story, as necessary.

b. Once everyone agrees on assumptions and has any necessary clarifications, the
players reevaluate their estimates and place their new selected cards on
the table.

c. If the story points are different, the players repeat the process, usually up to
three times.

d. If the players can’t agree on the estimated effort, the scrum master helps the
development team determine a score that all the players can support (he or she
may use a fist of five or thumbs up/thumbs down, as described in Chapter 7) or
determine that the user story requires more detail or needs to be further
broken down.

7. The players repeat Steps 3 through 6 for each user story.

Consider each part of the definition of done — developed, integrated, tested
(including test automation), and documented — when you create estimates.

You can play estimation poker at any point — but definitely play during the prod-
uct roadmap development and as you progressively break down user stories for
inclusion in releases and sprints. With practice, the development team will get
into a planning rhythm and become more adept at quickly estimating.

On average, development teams may spend about 10 percent of their time each
sprint decomposing and refining product backlog items, including estimating and
re-estimating. Make your estimation poker games fun! Bring in snacks, take
breaks as needed, use humor, and keep the mood light.

CHAPTER 10 Planning Releases and Sprints 195

Affinity estimating
Estimation poker can be effective, but what if you have many user stories? Playing
estimation poker for, say, 500 user stories could take a long time. You need a way
to estimate your entire product roadmap, but one that allows you to focus on only
the user stories you must discuss to gain consensus.

When you have a large number of user stories, many of them are probably similar
and would require a similar amount of effort to complete. One way to determine
the right stories for discussion is to use affinity estimating. In affinity estimating,
you quickly categorize your user stories and then apply estimates to these catego-
ries of stories.

When estimating by affinity, write your user stories on index cards or sticky notes.
These types of user story cards work well when quickly categorizing stories.

Affinity estimating can be a fast and furious activity — the development team
may choose to have the scrum master help facilitate affinity estimating sessions.
To estimate by affinity, follow these steps:

1. Taking no more than 60 seconds for each category, the development
team agrees on a single user story in each of the following categories:

• Extra-small user story

• Small user story

• Medium user story

• Large user story

• Extra-large user story

• Epic user story that is too large to come into the sprint

• Needs clarification before estimating

2. Taking no more than 60 seconds per user story, the development team
puts all remaining stories into the categories listed in Step 1.

If you’re using index cards or sticky notes for your user stories, you can
physically place those cards into categories on a table or a whiteboard,
respectively. If you divide the user stories among the development team
members, having each development team member categorize a group of
stories, this step can go quickly!

196 PART 3 Agile Planning and Execution

3. Taking another 30 minutes, maximum, for each 100 user stories, the
development team reviews and adjusts the placement of the user
stories.

The entire development team must agree on the placement of the user stories
into size categories.

4. The product owner reviews the categorization.

5. When the product owner’s expected estimate and the team’s actual
estimate differ by more than one story size, they discuss that user story.

The development team may or may not decide to adjust the story size.

Note that after the product owner and the development team discuss
clarifications, the development team has the final say on the user story size.

6. The development team plays estimation poker on the user stories in both
the epic and the needs clarification categories.

The number of user stories in these categories should be minimal.

User stories in the same size category will have the same user story score. You can
play a round of estimation poker to double-check a few, but you won’t need to
spend time in unnecessary discussion for every user story.

Story sizes are like T-shirt sizes and should correspond to Fibonacci scale num-
bers, as shown in Figure 10-5.

You can use the estimating and prioritizing techniques in this chapter for require-
ments at any level, from themes and features down to single user stories.

That’s it. In a few hours, your entire product backlog was estimated. In addition,
your scrum team has a shared understanding of what the requirements mean,
having discussed them face-to-face rather than relying on interpretations of
extensive documentation.

FIGURE 10-5:
Story sizes as

T-shirt sizes and
their Fibonacci

numbers.

CHAPTER 10 Planning Releases and Sprints 197

Release Planning
A release is a group of usable product features that you deploy to the market.
A release does not need to include all the functionality outlined in the product
roadmap but should include at least the minimal marketable features, the smallest
group of product features that you can effectively deploy and promote in the mar-
ketplace. Your early releases will include highest priority (high value, or high risk,
or both) items and exclude lower-priority requirements you identified during the
product roadmap stage.

When planning a release, you establish the next set of minimal marketable fea-
tures and identify an imminent product launch date around which the team can
mobilize. As when creating the vision statement and the product roadmap, the
product owner is responsible for creating the release goal and establishing
the release date. However, the development team’s estimates, with the scrum
master’s facilitation, contribute to the process.

Release planning is stage 3 in the Roadmap to Value (refer to Chapter 9 to see the
roadmap as a whole). Figure 10-6 shows how release planning fits into product
development.

Release planning involves completing two key activities:

 » Revising the product backlog: In Chapter 9, we tell you that the product
backlog is a comprehensive list of all the user stories you currently know for
your product, whether or not they belong in the current release. Keep in mind
that your list of user stories will probably change throughout development.

 » Creating the release plan: This activity consists of defining the release goal,
release target date, and prioritization of product backlog items that support
the release goal. Whereas the product vision provides the long-range goal of
the product, the release plan provides a midrange goal that the team can
accomplish.

FIGURE 10-6:
Release planning

as part of the
Roadmap to

Value.

198 PART 3 Agile Planning and Execution

Don’t create a new, separate backlog during release planning. The task is unnec-
essary and reduces the product owner’s flexibility. Prioritizing the existing prod-
uct backlog based on the release goal is sufficient and enables the product owner
to have the latest information when he or she commits to the scope during sprint
planning.

The product backlog and release plan are some of the most important information
radiators between the product owner and the development team. (See Chapter 11
for more on information radiators.) In Chapter 9, you find out how to complete a
product backlog. How to create a release plan is described next.

The release plan contains a release schedule for a specific set of features. The
product owner creates a release plan at the start of each release. To create a release
plan, follow these steps:

1. Establish the release goal.

The release goal is an overall business goal for the product features in your
release. The product owner and development team collaborate to create a
release goal based on business priorities and the development team’s
development speed and capabilities.

2. Identify a target release date.

Some scrum teams determine release dates based on the completion of
functionality; others may have hard dates, such as March 31 or September 1.
The first case has a fixed scope and flexible date; the second case has a fixed
date and a flexible scope.

If a fixed date and fixed scope are determined for the release, adjustments
may need to be made to the number of teams to accomplish the release goal
according to schedule. The development team, not the product owner,
estimates the effort required to implement product backlog items. Imposing a
fixed scope and timeline without adjusting quality or resources (in this case,
talent resources) will not be successful.

3. Review the product backlog and the product roadmap to determine the
highest-priority user stories that support your release goal (the minimum
marketable features).

These user stories will make up your first release.

We like to achieve a release goal with about 80 percent of the user stories,
using the final 20 percent to add robust features that will meet the release goal
while adding to the product’s “wow” factor. This approach provides appropriate
flexibility and slack for the scrum team to deliver value without having to
complete every single task.

CHAPTER 10 Planning Releases and Sprints 199

4. Refine the user stories in your release goal.

During release planning, dependencies, gaps, or new details are often identi-
fied that affect estimates and prioritization. This is the time to make sure the
portion of the product backlog supporting your release goal is sized. (Refer to
Figure 10-3.) We like to make sure that items supporting the current release
goal have been decomposed and are sized appropriately for the release. The
development team helps the product owner by updating estimates for any
added or revised user stories, and commits to the release goal with the
product owner.

Release planning is the initial opportunity to identify and break down depen-
dencies before they become impediments. Dependencies are anti-patterns to
becoming agile. Teams should work to become highly aligned and highly
autonomous. Dependencies are an indication that your team does not have
the capability to do whatever it is dependent on.

5. Estimate the number of sprints needed, based on the scrum team’s
velocity.

Scrum teams use velocity as an input to plan how much work they can take on
in a release and sprint. Velocity is the sum of all user story points completed
within a sprint. So, if a scrum team completed six user stories during its first
sprint with sizes 8, 5, 5, 3, 2, 1, its velocity for the first sprint is 24. The scrum
team would plan its second sprint keeping in mind that it completed 24 story
points during the first sprint.

After multiple sprints, scrum teams can use their running average velocity as an
input to determine how much work they can take on in a sprint, as well as to
extrapolate their release schedule by dividing the total number of story points in
the release by their average velocity. You learn more about velocity in Chapter 15.

Be aware that some teams add a release sprint to a release to conduct activities
unrelated to product development but necessary to release the product to custom-
ers. If you need a release sprint, be sure to factor that into the date you choose.

Delaying crucial development tasks such as testing until the end of development
rearloads risk. Agile techniques frontload risk to avoid the surprises and defects
that result from delayed testing. If a scrum team requires a release sprint, it prob-
ably means the broader organization can’t support being truly shippable each
sprint, which is an impediment to becoming agile. The goal for scrum teams is to
have every type of work or activity required to release functionality to the market
as part of the sprint-level definition of done. Scrum masters should work together
to remove organizational impediments preventing teams from being able to
release at scale according to their sprint-level definition of done.

200 PART 3 Agile Planning and Execution

In some traditional or project-focused organizations, some tasks, such as security
testing or load testing a software product, can’t be completed within a sprint
because the task’s environment takes time to set up and request. Although release
sprints allow scrum teams to plan for these types of activities, doing so is an anti-
pattern, or the opposite of being agile. In these examples, the scrum master would
work with the organizational leaders who manage the security or load testing
environments to find ways to enable scrum teams to accomplish security or lead
testing during the sprint.

Each planned release shifts from what was a tentative plan (high-level product
roadmap items) to a more concrete goal ready to execute in the sprint(s) of the
release. Figure 10-7 represents a typical release plan.

Bear in mind the pen-pencil rule: You can commit to (write in pen) the plan for
the first release, but anything beyond the first release is tentative (written in pen-
cil). In other words, use just-in-time planning (see Chapter 7) for each release.
After all, things change, so why bother getting microscopic too early?

Preparing for Release
In release planning, you also need to prepare your organization for the product
release. The next section discusses how to prepare for supporting the new func-
tionality in the marketplace and how to get stakeholders in your company or
organization ready for product deployment.

FIGURE 10-7:
Sample release

plan.

CHAPTER 10 Planning Releases and Sprints 201

Preparing the product for deployment
In each sprint, a valuable working product increment is created in support of the
release goal. With a definition of done that means each sprint’s increment is
 shippable, there’s not much more you need to do to prepare the product for tech-
nical deployment. Every sprint, you’re ready to release if there is enough value
accumulated for the customer.

With software product development, releasing to production is done through con-
tinuous integration (CI) and continuous deployment (CD), which are extreme pro-
gramming (XP) practices used with software product development. (You can read
more about CI in Chapter 17.) The product code is checked in and moved to quality
assurance (QA) and then to the production (live) environments as quickly and
seamlessly as possible. Advancements in technology enable teams to automate a
pipeline for building, integrating, testing, and fixing without delay. Combining a
CI/CD pipeline with a robust automated testing harness raises the bar of your
product development agility. Teams developing non-software products should
use techniques that automate testing and integration of new functionality to the
existing product as much as possible.

In information technology (IT), usually involving software development, develop-
ment operations (DevOps) is the integration of software development and IT opera-
tions (which includes functions such as systems administration and server
maintenance). Taking a DevOps approach enables everyone involved (user experi-
ence, testing, infrastructure, database, coding, design) to work together, to elim-
inate handoffs, and to streamline collaboration for reduced deployment cycle
times. Multiple teams working on the same product will not be successful without
a reliable CI/CD pipeline.

Not all agile product development efforts use release planning. Some scrum teams
release functionality for customer use with every sprint or even every day. The
development team, product, organization, customers, stakeholders, and product’s
technological complexity can all help determine your approach to product releases.
Helpful for this discussion are Principles 1 and 3, respectively: “Satisfy the cus-
tomer through early and continuous delivery” and “Deliver. . .frequently, from a
couple of weeks to a couple of months, with a preference to the shorter time-
scale.” (For details, see Chapter 2.)

Prepare for operational support
After your product is released to the customer, someone will have to support it, a
responsibility that involves responding to customer inquiries, maintaining the
system in a production environment, and enhancing existing functionality to fill
minor gaps. Although new development work and operational support work are
both important, they involve different approaches and cadences.

202 PART 3 Agile Planning and Execution

Separating new development and support work ensures that new development
teams can focus on continuing to bring innovative solutions to customers at a
faster rate than if the team frequently switches between the two types of work.

We recommend a model that separates new development and maintenance work,
as illustrated in Figure 10-8.

For a scrum team of nine developers, for instance, we would divide the develop-
ment team into two teams, one with six developers, and the other with three.
(These numbers are flexible.) The team of six does new development work from
the product backlog in one-week to two-week sprints, as described in Chapters 9
through 12. The work that the team commits to during the sprint planning meet-
ing will be the only work it does.

The members of the three-person team are our firefighters and do maintenance
and support work in one-day sprints or by using kanban. (You learn about one-
day sprints in Chapter 11 and kanban in Chapter 5.) Single-day sprints allow the
scrum team to triage all incoming requests from the previous day, plan the
highest-priority items, implement those items as a team, and review the results
at the end of the day (or even earlier) for go or no-go approval before pushing the
changes to production. For continuity, the product owner and scrum master are
the same for each team.

Although the newly modified product development team is smaller than before,
there are still enough developers to keep new development efforts moving for-
ward, uninterrupted by maintenance work. By the time you begin releasing func-
tionality to the market, your scrum team will be working well together and the
developers will have increased their versatility by being able to complete more
types of tasks than when the project first started.

FIGURE 10-8:
Operational

support scrum
team model.

CHAPTER 10 Planning Releases and Sprints 203

Teams should rotate team members between the two activities at sprint boundaries
(every three to five sprints, for example) to give everyone an opportunity to learn
from both types of work. If support is excessive, the product owner may want to
reevaluate the product backlog to see if there are ways to reduce the weight of
support and its distraction. Support distractions cause the team to focus on tacti-
cal resolutions rather than strategic value creation. Team stability and accelera-
tion will improve.

When preparing for release, establishing expectations up front regarding how the
functionality will be supported in production allows the scrum team to develop
the product in a way that enables the team to effectively support the product after
it’s deployed. Establishing expectations also increases ownership across the scrum
team and heightens the team’s awareness and dedication to long-term success.

Product owners who maintain a strong working relationship with help desks or
those providing customer support benefit greatly by understanding how their
products are used by real users. Help desk reporting can be valuable for evaluating
product backlog candidates or upcoming priorities. Help desks benefit by knowing
that the scrum team is working to address any escalated incidents. The product
owner involves these groups in release planning to ensure that all are prepared for
operational support well in advance of release.

Preparing the organization
A product release often affects a number of departments in a company or an orga-
nization. To get the organization ready for the new functionality to be released
next, the product owner coordinates with the rest of the organization regarding
what to expect and what will be needed from them during release planning. When
product owners do this effectively, there shouldn’t be surprises at release time.

Release planning addresses not only the activities for the development team to
release but also the activities to be performed by the rest of the organization.
These might include the following:

 » Marketing: Do marketing campaigns related to the new product need to
launch at the same time as the product?

 » Sales: Do specific customers need to know about the product? Will the new
product cause an increase in sales?

 » Logistics: Is the product a physical item that includes packaging or shipping?

204 PART 3 Agile Planning and Execution

 » Product support: Does the customer service group have the information
it needs to answer questions about the new product? Will this group have
enough people on hand in case customer questions increase when the
product launches?

 » Legal: Does the product meet legal standards, including pricing, licensing, and
correct verbiage, for release to the public?

The departments that need to be ready for the release and the specific tasks these
groups need to complete will vary from organization to organization. A key to
release success, however, is that the product owner and scrum master involve the
right people and ensure that those people clearly understand what they need to do
to be ready for the functionality release.

During release planning, you also need to include one more group: the customer.
The next section discusses getting the marketplace ready for your product.

Preparing the marketplace
The product owner is responsible for working with other departments to ensure
that the marketplace — existing customers and potential customers — is ready
for what’s coming. The marketing or sales teams may lead this effort; team mem-
bers look to the product owner to keep them informed as to the release date and
the features that will be part of the release.

Some software products are for only internal employee use. Certain things you’re
reading in this section might seem like overkill for an internal application — that
is, an application released only within your company. However, many of these
steps are still good guidelines for promoting internal applications. Preparing cus-
tomers, whether internal or external, for new products is a key part of product
success.

To help prepare customers for the product release, the product owner may want
to work with different teams to ensure the following:

 » Marketing support: Whether you’re dealing with a new product or new
features for an existing product, the marketing department should leverage
the excitement of the new product functionality to help promote the product
and the organization.

 » Customer testing: If possible, work with your customers to get real-world
feedback about the product from a subset of end users. (Some people use
focus groups.) Your marketing team can also use this feedback to translate
into testimonials for promoting the product right away.

CHAPTER 10 Planning Releases and Sprints 205

 » Marketing materials: An organization’s marketing group also prepares the
promotional and advertising plans, as well as packaging for physical media.
Media materials, such as press releases and information for analysts, need to
be ready, as do marketing and sales materials.

 » Support channels: Ensure that customers understand the available support
channels in case they have questions about the product.

Review the items on your release backlog from the customer’s standpoint. Think
of the personas you used when creating your user stories. Do those personas need
to know something about the product? Update your launch checklist with items
that would be valuable to customers represented by your personas. You can find
more information about personas in Chapter 4.

Finally, you’re there — release day. Whatever role you played along the way, this
is the day you worked hard to achieve. It’s time to celebrate!

Sprint Planning
With agile product development, a sprint is a consistent iteration of time in which
the development team creates a specific group of product capabilities from start to
finish. At the end of each sprint, the functionality that the development team has
created should be working, ready to demonstrate, and potentially shippable to the
customer.

Sprints should be the same length. Keeping the sprint lengths consistent helps the
development team measure its performance and plan better at each new sprint.

Sprints generally last one to four weeks. One month is the longest amount of time
any sprint should last; longer iterations make changes riskier, defeating the pur-
pose of being agile. We rarely see sprints lasting longer than two weeks, and more
often see sprints lasting a week. One-week sprints are a natural cycle with the
Monday-to-Friday business week, which structurally prevents weekend work.
When priorities change on a daily basis, some scrum teams work in one-day
sprints, as discussed in Chapter 11.

Market and customer needs are changing more and more quickly, and the amount
of time you can afford between opportunities to gather customer feedback only
gets shorter. Our rule of thumb is that your sprint shouldn’t be longer than your
stakeholders can consistently go without changes in priority regarding what the
scrum team should be working on in the sprint. Sprint duration is a function of the
business’s need for change.

206 PART 3 Agile Planning and Execution

Each sprint includes the following:

 » Sprint planning at the beginning of the sprint

 » Daily scrum meetings

 » Development work — the bulk of the sprint

 » A sprint review and a sprint retrospective at the end of the sprint

Discover more about daily scrums, development work, sprint reviews, and sprint
retrospectives in Chapters 11 and 12.

Sprint planning is stage 4 in the Roadmap to Value, as you can see in Figure 10-9.
The entire scrum team — the product owner, scrum master, and development
team — works together to plan sprints.

The sprint backlog
The sprint backlog is a list of user stories associated with the current sprint and
related tasks. When planning your sprint, you do the following:

 » Establish the goal for your sprint.

 » Choose the product backlog items (user stories) that support your goal.

 » Break user stories into specific development tasks.

 » Create a sprint backlog. The sprint backlog consists of the following:

• The list of user stories in the sprint in order of priority.

• The relative effort estimate for each user story.

• The tasks necessary to develop each user story.

FIGURE 10-9:
Sprint planning as

part of the
Roadmap to

Value.

CHAPTER 10 Planning Releases and Sprints 207

• The effort, in hours, to complete each task (if needed). At the task level, if
you estimate the number of hours each task will take to complete, use
hours instead of using story points. Because your sprint has a specific
short length, and thus a known number of available working hours, you
can use the time each task takes to determine whether the tasks will fit
into the team’s capacity of the sprint. Each task should take one day or less
for the development team to complete.

Some mature development teams may not need to estimate their tasks as
they get more consistent at breaking down their user stories into execut-
able tasks. Estimating tasks is helpful for newer development teams to
ensure that they understand their capacity and plan each sprint
appropriately.

• A burndown chart, which shows the status of the work in progress for the sprint.

Tasks should take a day or less to complete for two reasons. The first reason
involves basic psychology: People are motivated to get to the finish line. If you
have a task that you know you can complete quickly, you’re more likely to finish
it on time, just to check it off your to-do list. The second reason is that one-day
tasks provide good red flags that development targets might be veering off course.
If a development team member reports that he or she is working on the same task
for more than one or two days, that team member probably has a roadblock and
the scrum master should investigate what might be keeping the team member
from finishing work. (For more on managing roadblocks, see Chapter 11.)

The development team collaborates to create and maintain the sprint backlog, but
only the development team can modify the sprint backlog. The sprint backlog
should reflect an up-to-the-day snapshot of the sprint’s progress. Figure 10-10
shows a sample sprint backlog at the end of the sprint planning meeting. You can
use this example, find other samples, or even use a whiteboard.

The sprint planning meeting
On the first day of each sprint, often a Monday morning, the scrum team holds the
sprint planning meeting.

For a successful sprint planning meeting, make sure everyone involved in the ses-
sion (the product owner, the development team, the scrum master, and anyone
else the scrum team requests) is dedicated to the effort for the entire meeting.

208 PART 3 Agile Planning and Execution

Base the length of your sprint planning meeting on the length of your sprints.
Sprint planning should take no longer than two hours per week of the sprint, or
no longer than a full day for a one-month sprint. This timebox helps ensure that
the meeting stays focused and on track. Figure 10-11 is a good quick reference for
your sprint planning meeting lengths.

With agile product development, the practice of limiting the time of your meet-
ings is sometimes called timeboxing. Keeping your meetings timeboxed provides
focus and ensures that the development team has the time it needs to create the
product.

FIGURE 10-11:
Ratio of sprint

planning meeting
to sprint length.

FIGURE 10-10:
Sprint backlog

example.

CHAPTER 10 Planning Releases and Sprints 209

You’ll split your sprint planning meetings into two parts: one to set a sprint goal
(the “why”) and choose user stories for the sprint (the “what”), and another to
break down your user stories into individual tasks (the “how” and “how much”).
The details on each part are discussed next.

Part 1: Setting goals and choosing user stories
In the first part of your sprint planning meeting, the product owner and develop-
ment team, with support from the scrum master, decide what to do during the
sprint by doing the following:

1. Discuss and set a sprint goal.

2. Select the user stories from the product backlog that support the sprint
goal, further refine them for understanding, and revisit their relative
estimates.

3. If needed, create user stories to fill gaps to achieve the sprint goal.

4. Determine what the team can commit to in the current sprint.

Consistently refining the product backlog ensures that the scrum team plans
items into each sprint with which the team is already familiar. This refinement is
also critical for ensuring that sprint planning stays within the timebox and results
in a clear plan to deliver potentially shippable functionality at the end of each
sprint. Scrum teams, on average, spend about 10 percent of their sprint in product
backlog refinement for future sprints.

At the beginning of your sprint planning meeting, the product owner should pro-
pose a sprint goal that identifies a problem to solve for the customer and then
together with the development team discuss and agree on the sprint goal. The
sprint goal should be an overall description of the working customer functionality
that the team will demonstrate and possibly release at the end of the sprint. The
goal is supported by the highest-priority user stories in the product backlog.
A sample sprint goal for the mobile banking application (refer to Chapter 9) might
be as follows:

Demonstrate the ability of a mobile banking customer to log in and view account
balances and pending and prior transactions.

Using the sprint goal, you determine the user stories that belong in the sprint and
refine the estimates for those user stories, as needed. For the mobile banking

210 PART 3 Agile Planning and Execution

application sprint goal example, the group of user stories for the sprint might
include the following:

 » Log in and access my accounts.

 » View account balances.

 » View pending transactions.

 » View prior transactions.

All these would be high-priority user stories in the product backlog that support
the sprint goal.

Don’t forget to bring at least one improvement item agreed to during a previous
sprint retrospective.

The second part of reviewing user stories is confirming that the effort estimates
for each user story have been reviewed and adjusted, if needed, and reflect the
development team’s current knowledge of the user story. Adjust the estimate if
necessary. With the product owner in the meeting, resolve any outstanding ques-
tions. At the beginning of the sprint, the scrum team has the most up-to-date
knowledge about the system and the customer’s needs, so make sure the develop-
ment team and product owner have one more chance to clarify and size the user
stories going into the sprint.

Finally, after you know which user stories support the sprint goal, the develop-
ment team should agree and confirm that it can complete the goal planned for the
sprint. If any of the user stories you discussed earlier don’t fit in the current
sprint, remove them from the sprint and add them back into the product backlog.

Always plan and work on one sprint at a time. An easy trap to fall into is to place
user stories into specific future sprints. For example, when you’re still planning
sprint 1, don’t decide that user story X should go into sprint 2 or 3. Instead, keep
the ordered list of user stories up to date in the product backlog and focus on
always developing the next highest-priority stories. Commit to planning only for
the current sprint. What you learn in sprint 1 may fundamentally change how you
go about sprint 2 or 10 or 100.

After you have a sprint goal, user stories for the sprint, and a commitment to the
goal, move on to the second part of sprint planning.

Because a sprint planning meeting for sprints longer than one week might last a
few hours, you might want to take a break between the two parts of the meeting.

CHAPTER 10 Planning Releases and Sprints 211

Part 2: Breaking down user stories into
tasks for the sprint backlog
In the second part of the sprint planning meeting, the scrum team does the
following:

1. The development team creates the sprint backlog tasks associated with
each user story. Make sure that tasks encompass each part of the
definition of done: developed, integrated, tested (including test
automation), and documented.

2. The development team double-checks that it can complete the tasks in
the time available in the sprint.

3. Each development team member should choose his or her first task to
accomplish before leaving the meeting.

Development team members should each work on only one task on one user story
at a time to enable swarming — the practice of the entire development team work-
ing on one user story until completion. Swarming can be an efficient way to com-
plete work in a short amount of time. In this way, scrum teams avoid getting to
the end of the sprint with all user stories started but few finished.

At the beginning of part two of the meeting, break the user stories into individual
tasks and allocate a number of hours to each task. The development team’s target
should be completing a task in a day or less. For example, a user story for the XYZ
Bank mobile application might be as follows:

Log in and access my accounts.

The team decomposes this user story into tasks, such as the following:

 » Write the unit test.

 » Write the user acceptance test.

 » Create an authentication screen for a username and password, with a Submit
button.

 » Create an error screen for the user to reenter credentials.

 » Create a screen (once logged in) displaying a list of accounts.

 » Using authentication code from the online banking application, rewrite code
for an iPhone/iPad/Android application. (This task could potentially be three
different tasks.)

 » Create calls to the database to verify the username and password.

212 PART 3 Agile Planning and Execution

 » Re-factor code for mobile devices.

 » Write the integration test.

 » Promote the product increment to QA.

 » Update the regression test automation suite.

 » Run the security test.

 » Update the wiki documentation.

After you know the number of hours that each task will take, do a final check to
make sure that the number of hours available to the development team reasonably
matches the total of the tasks’ estimates. If the tasks exceed the hours available,
one or more user stories will have to come out of the sprint. Discuss with the
product owner what tasks or user stories are the best to remove.

If extra time is available within the sprint, the development team might be able to
include another user story. Just be careful about over-committing at the begin-
ning of a sprint, especially during the first few sprints.

After you know which tasks will be part of the sprint, choose what you will work
on first. Each development team member should select his or her initial task to
accomplish for the sprint. Team members should focus on one task at a time.

As the development team members think about what they can complete in a
sprint, use the following guidelines to ensure that they don’t take on more work
than they can handle while they’re learning new roles and techniques:

 » Sprint 1: 25 percent of what the development team thinks it can accomplish.
Include overhead for learning the new process and starting product
development.

 » Sprint 2: Assuming the scrum team was able to complete sprint 1 success-
fully, 50 percent of what the development team thinks it can accomplish.

 » Sprint 3: Assuming success in sprint 2, 75 percent of what the development
team thinks it can accomplish.

 » Sprint 4 and forward: Assuming success in sprint 3, 90 percent. The develop-
ment team will have developed a rhythm and velocity, gained insight into agile
principles and the product, and will be working at close to full pace.

Avoid planning 100 percent of capacity for a sprint. Scrum teams should build
in slack in their sprint to account for unknowns that inevitably come up.
Instead of padding estimates, simply be wise and don’t commit every available
hour, assuming everything will go as planned. Teams that finish early
accelerate faster.

CHAPTER 10 Planning Releases and Sprints 213

The scrum team should constantly evaluate the sprint backlog against the devel-
opment team’s progress on the tasks. At the end of the sprint, the scrum team can
also assess estimation skills and capacity for work during the sprint retrospective
(see Chapter 12). This evaluation is especially important for the first sprint.

For the sprint, how many total working hours are available? In a one-week sprint
or a 40-hour week, you could wisely assume that 4.5 working days are available to
develop user stories. Why 4.5 days? About one-fourth of day one is taken up with
sprint planning, and about one-fourth of day five is taken up with the sprint
review (when the stakeholders review the completed work) and the sprint retro-
spective (when the scrum team identifies team improvements for future sprints).
That leaves 4.5 days of development. If you assume each full-time team member
has 30 hours per week (6 productive hours per day) to focus on the sprint goal, the
number of working hours available is

Number of team members × 6 hours × 4.5 days

After sprint planning is finished, the development team can immediately start
working on the tasks to create the product!

The scrum master should make sure the product vision and roadmap, product
backlog, definition of done, and sprint backlog are in a prominent place and acces-
sible to everyone during sprint planning as well as in the area in which they work.
In this way, stakeholders can view the product information and progress on
demand without interrupting the development team. For details, see Chapter 11.

CHAPTER 11 Working throughout the Day 215

Chapter 11
Working throughout
the Day

It’s Tuesday, 9 a.m. Yesterday, you completed sprint planning, and the develop-
ment team started work. For the rest of the sprint, you’ll be working cyclically,
where each day follows the same pattern.

In this chapter, you find out how to use agile principles daily throughout each
sprint. You see the work that you will do every day as part of a scrum team: plan-
ning and coordinating your day, tracking progress, creating and verifying usable
functionality, inspecting and adapting, and identifying and dealing with impedi-
ments to your work. You see how the different scrum team members work together
each day during the sprint to ensure transparency as they help create the product.

Planning Your Day: The Daily Scrum
With agile product development, you make plans throughout the entire develop-
ment effort — and on a daily basis. Agile development teams start each workday
with a daily scrum meeting to evaluate their progress and adapt their plan for the
day based on what was accomplished previously. They identify and coordinate the
resolution of impediments (roadblocks requiring scrum master involvement),

IN THIS CHAPTER

 » Planning each day

 » Tracking daily progress

 » Developing and testing every day

 » Ending the day

216 PART 3 Agile Planning and Execution

note completed items, and synchronize and plan what each team member will do
during the day to achieve the sprint goal.

The daily scrum is stage 5 on the Roadmap to Value. You can see how the sprint
and the daily scrum fit into product development in Figure 11-1. Note how they
both repeat.

In the daily scrum meeting, each development team member addresses the fol-
lowing four topics, which facilitate team coordination:

 » What was completed yesterday to help accomplish the sprint goal?

Avoid using the daily scrum as a status report by having each developer give
an accounting of what they did the day before or by moving completed items
around on the task board. Developers should update their task as soon as
they complete it, or at the very least at the end of the day, so that when the
scrum team comes together for its daily scrum the next day, the status is
already reflected. In other words, don’t spend time on what was accomplished
yesterday unless it effects how to go about the work to be done today.

 » What will be done today to help accomplish the sprint goal?

 » What impediments are in the way of accomplishing the sprint goal?

 » This is how I feel. (We added the fourth question to help the scrum master
better understand team health daily rather than once per sprint.)

Other names you might hear for the daily scrum meeting are the daily huddle or the
daily standup meeting. Daily scrum, daily huddle, and daily standup all refer to the
same thing. Daily scrum is how scrum refers to it.

FIGURE 11-1:
The sprint and

the daily scrum in
the Roadmap to

Value.

CHAPTER 11 Working throughout the Day 217

We also have the scrum master address these three statements regarding the
team’s impediments:

 » Impediments resolved yesterday

 » Impediments that need to be resolved today (and order of priority)

 » Impediments that need to be escalated

What does the product owner do during the daily scrum? Listen. The product
owner listens to see if there is anything he or she can do to help the team accom-
plish its work more effectively. The product owner may provide clarification as
needed, and might say something if he or she hears something that indicates that
the development team is working on something outside the sprint goal. An
engaged, decisive product owner makes life easier for a development team.

One of the rules of scrum is that the daily scrum meeting should last 15 minutes
or less. Longer meetings eat into the development team’s day. Standing encour-
ages shorter meetings (which is why the meeting is referred to also as the daily
standup). You can also use props to keep daily scrum meetings quick.

We start meetings by tossing an item, such as a squeaky burger-shaped dog toy —
don’t worry; it’s clean — to a random development team member. Each person
addresses the four topics and then passes the squeaky toy to someone else. If
people are long-winded, we change the prop to a 500-page ream of copy paper,
which weighs about five pounds. Each person can talk for as long as he or she can
hold the ream out to one side. Either meetings will quickly become shorter, or
development team members will quickly build up their arm strength — in our
experience, it’s the former.

To keep daily scrums brief and effective, the scrum team can follow several
guidelines:

 » Anyone may attend a daily scrum, but only the development team, the
scrum master, and the product owner may talk. The daily scrum is the
scrum team’s opportunity to coordinate daily activities, not take on additional
requirements or changes from stakeholders. Stakeholders can discuss
questions with the scrum master or product owner afterward, but stakehold-
ers should not distract the development team from the focus of the sprint.

 » The focus is on immediate priorities. The scrum team should review only
completed tasks, tasks to be done, and roadblocks.

218 PART 3 Agile Planning and Execution

 » Daily scrum meetings are for coordination, not problem-solving. The
development team and the scrum master are responsible for having relevant
discussions of the tasks they’re working on and removing roadblocks during
the day.

To keep meetings from drifting into problem-solving sessions, scrum
teams can

• Create a list on a whiteboard to keep track of issues that need immediate
attention, and then address those issues directly after the meeting with
only those team members who need to be involved.

• Hold a meeting, called an after-party, to solve problems after the daily
scrum is finished. Some scrum teams schedule time for an after-party
every day; others meet only as needed.

 » The daily scrum is for peer-to-peer coordination. It is not used for an
individual to report status to one person, such as the scrum master or product
owner. Status is reported at the end of each day in the sprint backlog, and
should take developers about one minute.

 » Such a short meeting must start on time. It’s not unusual for the scrum
team to have a working agreement ensuring that meetings start and end on
time. Creative punishments for tardiness include doing pushups or adding
penalty money into a team celebration fund. Whatever punishment is used,
the scrum team agrees on it together; the method is not dictated to them by
someone outside the team, such as a manager.

 » The scrum team may request that daily scrum attendees stand up —
rather than sit down — during the meeting. Standing up makes people
eager to finish the meeting and get on with the day’s work.

Daily scrum meetings are effective for keeping the development team focused on
the right tasks for any given day. Because the development team members are
accountable for their work in front of their peers, they are less likely to stray from
their daily commitments. Daily scrum meetings also help ensure that the scrum
master and development team can deal with roadblocks immediately. These meet-
ings are so useful that even organizations that are not using any other agile tech-
niques sometimes adopt daily scrums.

We like to hold daily scrum meetings 30 minutes after the development team’s
normal start time to allow for traffic jams, emails, coffee, and other rituals when
starting the day. Having a later daily scrum meeting also allows the development
team time to review defect reports from automated testing tools that were run the
night or weekend before.

The daily scrum is for discussing progress and planning each upcoming day. As
you see next, you also track progress — not just discuss it — every day.

CHAPTER 11 Working throughout the Day 219

Tracking Progress
You also need to track the progress of your sprint daily. This section discusses
ways to keep track of the tasks in your sprint.

Two tools for tracking progress are the sprint backlog and a task board. Both the
sprint backlog and the task board enable the scrum team to show the sprint’s
progress to anyone at any given time.

The Agile Manifesto values individuals and interactions over processes and tools.
Make sure your tools support, rather than hinder, your scrum team. Modify or
even replace tools if needed. Read more about the Agile Manifesto in Chapter 2.

The sprint backlog
During sprint planning, you concentrate on adding user stories and tasks to the
spring backlog. During the sprint itself, you update the sprint backlog daily, track-
ing progress of the development team’s tasks for each working day. Figure 11-2
shows the sprint backlog for this book’s sample application, the XYZ Bank’s
mobile banking application, as it would appear after day 4 of the first sprint.
(Chapter 10 discusses details of the sprint backlog.)

FIGURE 11-2:
Sample sprint

backlog.

220 PART 3 Agile Planning and Execution

Make the sprint backlog available to the entire team every day. That way, anyone
who needs to know the sprint status can find it instantly.

Near the top left of Figure 11-2, note the sprint burndown chart, which shows the
progress that the development team is making. You can see that the development
team members have completed tasks close to the even burn rate of their available
hours, and the product owner has accepted several user stories as complete.

You can include burndown charts on your sprint backlog and on your product
backlog. (This chapter concentrates on the sprint backlog.) Figure 11-3 shows the
burndown chart in detail.

A burndown chart is a powerful tool for visualizing progress and the work remain-
ing. The chart shows the following:

 » The outstanding work (in hours) on the first vertical axis

 » Time, in days along the horizontal axis

Some sprint burndown charts, like the one in Figure 11-3, also show the outstand-
ing story points on a second vertical axis that is plotted against the same horizon-
tal time axis as hours of work remaining.

A burndown chart enables anyone to see the status of the sprint at a glance. Prog-
ress is clear. By comparing the realistic number of hours available to the work
remaining, you can find out daily whether the effort is going as planned, is in
better shape than expected, or is in trouble. This information helps you determine

FIGURE 11-3:
A burndown

chart.

CHAPTER 11 Working throughout the Day 221

whether the development team is likely to accomplish the sprint goal and helps
you make informed decisions early in the sprint.

You can create a sprint backlog using a spreadsheet and charting program such as
Microsoft Excel. You can also download our free sprint backlog template, which
includes a burndown chart, from the book’s website at www.dummies.com/go/
agileprojectmanagementfd3e.

Figure 11-4 shows samples of burndown charts for sprints in different situations.
Looking at these charts, you can tell how the work is progressing:

 » 1. Expected: This chart shows a normal sprint pattern. The remaining work
hours rise and fall as the development team completes tasks, ferrets out
details, and identifies tactical work it may not have initially considered.
Although work occasionally increases, it is manageable, and the team
mobilizes to complete all user stories by the end of the sprint.

 » 2. More complicated: In this sprint, the work increased beyond the point at
which the development team felt it could accomplish everything. The team
identified this issue early, worked with the product owner to remove some user
stories, and still achieved the sprint goal. The key to scope changes within a
sprint is that they are always initiated by the development team — no one else.

 » 3. Less complicated: In this sprint, the development team completed some
critical user stories faster than anticipated and worked with the product
owner to identify additional user stories it could add to the sprint.

 » 4. Not participating: A straight line in a burndown means that the team
didn’t update the burndown or made zero progress that day. Either case is a
red flag for future problems.

Just like on a heartbeat graph, a horizontal straight line on a sprint burndown
chart is never a good thing.

 » 5. Lying (or conforming): This burndown pattern is common for a new agile
development team that might be accustomed to reporting the hours that
management expects, instead of the time the work really takes, and conse-
quently tends to adjust the team’s work estimates to the exact number of
remaining hours. This pattern often reflects a fear-based environment, where
the managers lead by intimidation.

 » 6. Failing fast: One of the strongest benefits of this simple visualization of
progress is the immediate proof of progress or lack thereof. This pattern
shows an example of a team that wasn’t participating or progressing. Halfway
through the sprint, the product owner decided to cut losses by killing the
sprint and starting a new sprint with a new sprint goal. Only product owners
can end a sprint early.

222 PART 3 Agile Planning and Execution

The sprint backlog helps you track progress throughout each sprint. You can also
refer to earlier sprint backlogs to compare progress from sprint to sprint. You
make changes to your process in each sprint (read more about the concept of
inspect and adapt in Chapter 12). Constantly inspect your work and adapt to make
it better. Hold on to those old sprint backlogs.

Another way to keep track of your sprint is by using a task board. Read on to find
out how to create and use one.

The task board
Although the sprint backlog is a great way to track and show development prog-
ress, it’s probably in an electronic format, so it might not be immediately acces-
sible to anyone who wants to see it. Some scrum development teams use a task
board along with their sprint backlog. A task board provides a quick, easy view of
the items in the sprint that the development team is working on and has
completed.

We like task boards because you can’t deny the status they show. Like the product
roadmap, the task board can be made up of sticky notes on a whiteboard. The task
board will have at least the following four columns, from left to right:

 » To Do: The user stories and tasks that remain to be accomplished are in the
far left column.

 » In Progress: User stories and tasks that the development team is currently
working on are in the In Progress column. Only one user story should be in
this column. Having more user stories in progress is an alert that

FIGURE 11-4:
Profiles of

burndown charts.

CHAPTER 11 Working throughout the Day 223

development team members are not working cross-functionally and, instead,
are hoarding desired tasks (not swarming). You risk having multiple user
stories partially done instead of more user stories completely done by the end
of the sprint.

 » Accept: After the development team completes a user story, it moves the
story to the Accept column. User stories in the Accept column are ready for
the product owner to review and either provide feedback or accept.

 » Done: When the product owner has reviewed a user story and verifies that
the user story is complete, the product owner can move that user story to the
Done column.

Limit your work in progress! Only select one task at a time. Leave other tasks
available in the To Do column. Ideally, a development team will work on only one
user story at a time and swarm on the tasks of that user story to complete it
quickly. High-performing teams and organizations do one item well before mov-
ing onto the next item.

Because the task board is tactile — people physically move a user story card
through its completion — it can engage the development team more than an elec-
tronic document ever could. The task board encourages thought and action just by
existing in the scrum team’s work area, where everyone can see the board.

Allowing only the product owner to move user stories to the Done column pre-
vents misunderstandings about user story status.

Figure 11-5 shows a typical task board. As you can see, the task board is a strong
visual representation of the work in progress.

The task board is a lot like a kanban board. Kanban is a Japanese term that means
visual signal. Toyota created these boards as part of its lean manufacturing process.

In Figure 11-5, the task board shows four user stories, each separated by a hori-
zontal line called swim lanes. The first user story is done. All tasks are completed,
and the product owner has accepted the work done. For the second user story, the
development work is completed but is waiting for acceptance by the product
owner. The third user story is in progress, and the fourth user story has not yet
been started. At a glance, the status of each user story is clear not only to the
scrum team, making tactical coordination faster and easier, but also to interested
stakeholders.

224 PART 3 Agile Planning and Execution

Agile product development day-to-day work involves more than just planning
and tracking progress. In the next section, you see what most of your day’s work
will include, whether you’re a member of the development team, a product owner,
or a scrum master.

The product owner owns the product backlog. The development team owns the
sprint backlog. Ownership means keeping the backlog updated, clarified, and
transparent.

Agile Roles in the Sprint
Each member of a scrum team has specific daily roles and responsibilities during
the sprint. The day’s focus for the development team is producing shippable func-
tionality. For the product owner, the focus is on preparing the product backlog for
future sprints while supporting the development team’s execution of the sprint
backlog with real-time clarifications. The scrum master is the agile coach and

FIGURE 11-5:
Sample task

board.

CHAPTER 11 Working throughout the Day 225

maximizes the development team’s productivity by removing roadblocks and pro-
tecting the development team from external distractions.

Following are descriptions of the responsibilities of each member of the product
team during the sprint.

Keys for daily product owner success
A successful product owner focuses on ensuring that the development team has
everything it needs to keep the development speed high. The product owner works
to understand the problems and needs of customers by meeting with them fre-
quently. Product owners shield the development team from competing priorities,
allowing the team to focus on the sprint goal. By sitting with the rest of the scrum
team, the product owner can provide instant feedback as work is completed, enabling
the development team to turn requirements into valuable working functionality.

The product owner has the following responsibilities during a typical day in a
sprint:

 » Proactive contributions:

• Look forward to the next sprint and elaborate user stories in readiness for
the next backlog refinement or sprint planning meeting.

• Add new user stories to the product backlog as necessary and ensure that
new user stories support the product vision, release goal, and sprint goal.

• Collaborate with other product owners or stakeholders to align on release
or sprint goals. Maintain the product backlog as necessary.

• Review the product budget to stay abreast of product expenses and revenues.

• Review product performance information and trends in the marketplace.

• With the scrum master, watch for opportunities to proactively remove
impediments that could impede development if not addressed early, such
as product questions arising during sprint planning or legal wording.

 » Reactive contributions:

• Provide immediate clarification and decisions about requirements to keep
the development team developing.

• Remove business impediments brought by other members of the scrum
team, such as unplanned requests from other teams or stakeholders.
Shield the team from business distractions.

• Review completed user story functionality and provide feedback to the
development team.

226 PART 3 Agile Planning and Execution

Keys for daily development team
member success
Successful development team members have pride in their work. They build high-
quality, enduring products. They engineer their work for change, realizing refac-
toring is necessary and expected as more is learned. They sit next to their
teammates and perform tasks, even unfamiliar tasks, to expand their capabilities
and contributions to their team. They excel in their particular discipline and look
to expand their capability each day.

If you’re a member of the development team, you

 » Proactive contributions:

• Select the tasks of highest need and complete them as quickly as possible.

• Collaborate with other development team members to design the
approach to a specific user story, seek help when you need it, and provide
help when another development team member needs it.

• Collaborate with other scrum development teams to technically align on
release or sprint goals.

• Continually improve regression test automation, CI/CD pipelines, and unit
testing.

• Evaluate opportunities to improve the product architecture and develop-
ment processes.

• Alert the scrum master to any roadblocks you can’t effectively remove on
your own.

 » Reactive contributions:

• Request clarification from the product owner when you’re unclear about a
user story.

• Conduct peer reviews on one another’s work.

• Take on tasks beyond your normal role as the sprint demands.

• Fully develop functionality as agreed to in the definition of done (described
in the next section, “Creating Shippable Functionality”).

• Report daily on the amount of work remaining for your tasks in the sprint
backlog.

CHAPTER 11 Working throughout the Day 227

Keys for daily scrum master success
Successful scrum masters are both coaches and facilitators. They coach the team
to improved performance and facilitate team interactions to help the team reach
decisions quickly. They inspire, lead, challenge, and serve. Because scrum masters
also sit with the team, each day they look for opportunities to serve their team
members by removing impediments, by coaching the broader organization to bet-
ter work with the team, and by making sure the organization’s environment
enables success. After low-hanging-fruit team improvements are made, a scrum
master’s job only gets harder as he or she works to remove more difficult organi-
zational impediments affecting the team.

If you’re a scrum master, you do the following during a typical day:

 » Proactive contributions:

• Uphold agile values and practices by coaching the product owner, develop-
ment team, and organization when necessary.

• Remove roadblocks and organizational issues, both tactically for immediate
problems and strategically for potential long-term issues. Scrum masters
question the status quo of organizational constraints that strategically
impede scrum teams from becoming higher functioning. In Chapter 7, we
compare the scrum master to an aeronautical engineer, continually
removing and preventing organizational drag on the development team.

• Build relationships to foster close cooperation with people working with the
scrum team. Build clout and champion agility throughout the organization.

Nonverbal communication says a lot. Scrum masters can benefit from
understanding body language to identify unspoken tensions in the scrum
team.

• Prepare for upcoming facilitation opportunities, such as researching
retrospective models to help the team maximize its retrospective discus-
sion and acquiring supplies to facilitate affinity estimation.

• Shield the development team from external distractions.

• Collaborate with other scrum masters and stakeholders to resolve or
escalate impediments.

 » Reactive contribution:

• Facilitate consensus building in the scrum team, as needed.

We often tell scrum masters, “Never lunch alone. Always be building relation-
ships.” You never know when you’ll need to rely on relationships to remove an
obstacle.

228 PART 3 Agile Planning and Execution

Keys for daily stakeholder success
As members of the product team, successful stakeholders know how to work with
the product owner to ensure product success. They counsel, collaborate, and
listen. They give feedback and support. In flat, agile organizations, stakeholders
empower, coach, and serve the scrum team rather than direct its activities from
the outside or top-down. Each day, they participate in team discussions when
asked but otherwise reserve their feedback for sprint review discussions. For more
on the product stakeholder role, see Chapter 7.

If you’re a product stakeholder, you do the following during a typical day:

 » Proactive contributions:

• Counsel with the product owner on customer needs and backlog priorities.

• Look for opportunities to remove team impediments. Continually ask how
you can help.

 » Reactive contributions:

• Participate in sprint reviews and provide feedback. Be available to attend
any other discussion requested by the team.

• Look at team burndowns or task boards. Look for opportunities to help the
team become successful.

• Practice Principle 5, “Give the team the environment and support they
need, then trust them to get the job done.”

Keys for daily agile mentor success
For teams new to agile techniques, agile mentors are critical sounding boards for
the team. They challenge the team’s thinking, helping to create healthy tension.
Similar to scrum masters, they coach, challenge, and serve. They teach them to
find answers themselves (rather than just give them the answers). The team
understands that it will get honesty and candor from the agile mentor. Agile men-
tors work to become redundant, transitioning their experience and expertise to
the scrum master. Agile mentors participate daily in whatever way the team needs
them.

Strategically, agile mentors engage with the organization’s leaders to help maxi-
mize the value created by the teams. The scrum team’s maximum pace is deter-
mined by the environment in which they’re working. Agile mentors help leaders
improve the environment according to agile values and principles. See Chapter 18
for more on the agile mentor’s strategic role.

CHAPTER 11 Working throughout the Day 229

If you’re an agile mentor, you do the following during a typical day:

 » Proactive contributions:

• Counsel with the scrum master, primarily to help them build expertise,
clout, and capability to effectively coach, trailblaze, and facilitate.

• Provide agility mentoring to developers and the product owner in the form
of in-the-moment course corrections as they strive to learn and improve
their roles.

• Coach stakeholders and other organizational leaders on how they can best
support the scrum team to deliver valuable and potentially shippable
functionality for the customer at every sprint.

 » Reactive contributions:

• Observe scrum team events as well as informal interactions and provide
feedback and guidance.

• Attend any discussion requested by the team.

• Inspect team burndowns or task boards. Provide feedback on opportuni-
ties to help the team become successful.

As you can see, each scrum team member has a specific job in the sprint. In the
next section, you see how the product owner and development team work together
to create the product.

Creating Shippable Functionality
The objective of the day-to-day work of a sprint is to create shippable function-
ality for the product in a form that can be delivered to a customer or user.

Within the context of a single sprint, a product increment or shippable functionality
means that a work product has been developed, integrated, tested, and docu-
mented according to the definition of done and is deemed ready to release. The
development team may or may not release the increment at the end of the sprint
because release timing depends on the release plan. The release plan may require
multiple sprints before the product contains the set of minimum marketable fea-
tures necessary to justify a market release.

It helps to think about shippable functionality in terms of user stories. A user
story starts out as a written requirement on a card. As the development team cre-
ates functionality, each user story becomes an action a user can take. Shippable
functionality equals completed user stories.

230 PART 3 Agile Planning and Execution

To create shippable functionality, the development team and the product owner
are involved in three major activities:

 » Elaborating

 » Developing

 » Verifying

During the sprint, any or all of these activities can be happening at any given time.
As you review them in detail, remember that they don’t always occur in a lin-
ear way.

Elaborating
With agile product development, elaboration is the process of determining the
details of a product feature. Whenever the development team tackles a new user
story, elaboration ensures that any unanswered questions about a user story are
answered so that the process of development can proceed.

The product owner works with the development team to elaborate user stories,
but the development team should have the final say on design decisions. The
product owner should be available for consultation if the development team needs
further clarification on requirements throughout the day.

Collaborative design is a major factor for successful products. Remember these
agile principles: “The best architectures, requirements, and designs emerge from
self-organizing teams,” and “Business people and developers must work together
daily throughout a project.” Watch out for development team members who have
a tendency to try to work alone on elaborating user stories. If a member of the
development team separates himself or herself from the team, perhaps part of the
scrum master’s job should be coaching that person on upholding agile values and
practices.

Developing
During product development, most of the activity naturally falls to the develop-
ment team. The product owner continues to work with the development team on an
as-needed basis to provide clarification and to approve developed functionality.

The development team should have immediate access to the product owner. Ide-
ally, the product owner sits with the development team when he or she is not
interacting with customers and stakeholders.

CHAPTER 11 Working throughout the Day 231

The scrum master should also sit with the development team. He or she focuses
on protecting the development team from outside disruptions and removing
impediments that the development team encounters.

To sustain agile practices during development, be sure to implement the type of
development practices from extreme programming we show you in Chapter 5,
including the following:

 » Pair up development team members to complete tasks. Doing so
enhances the quality of the work and encourages the sharing of skills.

 » Follow the development team’s agreed-upon design standards. If you
can’t follow them for whatever reason, revisit these standards and improve
them.

 » Start development by setting up automated tests. You can find more
about automated testing in the following section and in Chapter 17.

 » Avoid coding new features that are outside the sprint goal. If new,
nice-to-have features become apparent during development, add them to the
product backlog.

 » Integrate changes that were coded during the day, one set at a time. Test
for 100 percent correctness. Integrate changes at least once a day; some
teams integrate many times a day.

 » Undertake code reviews to ensure that the code follows development
standards. Identify areas that need revising. Add the revisions as tasks in the
sprint backlog.

 » Create technical documentation as you work. Don’t wait until the end of
the sprint or, worse, the end of the sprint prior to a release.

Continuous integration is the term used in software development for integrating
and comprehensively testing with every code build. Continuous integration helps
identify problems before they become crises. Continuous integration (CI) paired
with continuous deployment (CD) is known as CI/CD. Together, teams are able to
release early and often. Read more about CI/CD in Chapter 10.

Verifying
Verifying the work done in a sprint has three parts: automated testing, peer
review, and product owner review.

It is exponentially cheaper to prevent a defect than it is to rip it out of a deployed
system.

232 PART 3 Agile Planning and Execution

Automated testing
Automated testing means using a computer program to do the majority of your
testing for you. With automated testing, the development team can quickly
develop and test the product, which is a big benefit for improved team agility.

Often, scrum teams develop during the day, with regression test automation and
security vulnerability scanning run on a nightly or weekly cycle. After the cycle
completes, the team can review the defect report that the testing program gener-
ated, report on any problems during the daily scrum, and correct those issues
immediately during the day.

Software automated testing can include the following:

 » Unit testing: Testing source code in its smallest parts — the component level

 » System testing: Testing the code with the rest of the system

 » Integration testing: Verifying that new functionality created in the develop-
ment environment still works when integrated with the existing functionality

 » Regression testing: Testing the product increment with previous product
increments to ensure that previous functionality continues to work

 » Vulnerability or penetration testing: Security testing to evaluate the
product’s exposure to internal and external threats

 » User acceptance testing: Validating that the new functionality satisfies the
acceptance criteria

 » Static testing: Verifying that the product’s code meets standards based on
rules and best practices that the development team has agreed upon

Peer review and team development techniques
Peer review and pair programming are techniques teams use to build product
increments. Peer review simply means that development team members review
one another’s work. Pair programming means that two people work together, with
one person driving (the pilot) and one observing from behind (the navigator).
Both practices improve product quality, build or expand team member capability,
and reduce single-point-of-failure exposure.

A newer trend gaining momentum is mob programming. Mob programming is an
approach for product development in which the entire team works on the same
thing, at the same time, in the same space, and at the same computer. The entire
team continuously collaborates at a single computer to deliver a single work item
at a time. Customers are often invited to participate with the team as well. Mob

CHAPTER 11 Working throughout the Day 233

programming extends the benefits of pair programming from two people to the
entire team.

Benefits of mob programming include a broader technical understanding of the
product, a faster resolution of communication and decision-making problems,
preventing the need to do more than is barely sufficient, reduced technical debt,
reduced thrashing of the team and team members, and reduced work in progress.

However the team chooses to review each other’s work, collocation helps make
the review easy and informal — you can turn to the person next to you and ask
him or her to take a quick look at what you just completed. Self-managing teams
should decide what works best for them.

Product owner review
When a user story has been developed and tested, the development team moves
the stories to the Accept column on the task board discussed later in this chapter.
The product owner then reviews the functionality and verifies that it meets the
goals of the user story, per the user story’s acceptance criteria. The product owner
verifies (accepts or rejects) user stories throughout each day as the development
team completes them.

As discussed in Chapter 10, the back side of each user story card has verification
steps. These steps allow the product owner to review and confirm that the code
works and supports the user story. Figure 11-6 shows a sample user story card’s
verification steps.

Finally, the product owner should run through some checks to verify that the user
story in question meets the definition of done. When a user story meets its accep-
tance criteria as well as the definition of done, the product owner updates the task
board by moving the user story from the Accept column to the Done column.

While the product owner and the development team are working together to cre-
ate shippable functionality for the product, the scrum master helps the scrum
team to identify and clear roadblocks that appear along the way.

FIGURE 11-6:
User story

verification.

234 PART 3 Agile Planning and Execution

Identifying roadblocks
A major part of the scrum master’s role is managing and helping resolve road-
blocks that the scrum team identifies. Roadblocks are anything that thwarts a
team member from working to full capacity.

Although the daily scrum is a good place for the development team to identify
roadblocks, the development team may come to the scrum master with issues
anytime throughout the day.

Examples of roadblocks follow:

 » Local, tactical issues, such as

• A manager trying to pull away a team member to work on a “priority” sales
report.

• The development team needing additional hardware, software, or access
to facilitate progress.

• A development team member who doesn’t understand a user story and
says the product owner isn’t available to help.

 » Organizational impediments, such as

• An overall resistance to agile techniques, especially when the company
established and maintained prior processes at significant cost.

• Managers who might not be in touch with the work on the ground.
Technologies, development practices, and project management practices
are always progressing.

• External departments that may not be familiar with scrum needs and the
pace of development when using agile techniques.

• An organization that enforces policies that don’t make sense for scrum
teams. Centralized tools, budget restrictions, and standardized processes
that don’t align with agile processes can all cause issues for scrum teams.

The most important trait a scrum master can have is organizational clout or influ-
ence. Organizational clout gives the scrum master the ability to have difficult con-
versations and make the small and large changes necessary for the scrum team to
be successful. We provide examples of different types of clout in Chapter 5.

Beyond the primary focus of creating shippable functionality, other things happen
during the day. Many of these tasks fall to the scrum master. Table 11-1 shows
potential roadblocks and the action that the scrum master can take to remove the
impediments.

CHAPTER 11 Working throughout the Day 235

Information Radiators
Each day, the team uses information radiators to broadcast important information
to not only itself but also to stakeholders. An information radiator is a poster, task
board, list, or any artifact that can be viewed on-demand. Information radiators
such as a sprint backlog or a task board reduce questions such as, “What’s the
status of a story?” or “Is the team on track to meet the sprint goal?” Most infor-
mation radiators are posted in the team’s physical workspace or, if the team is
collaborating with other teams, in a common collaboration or meeting area. If
teams are using digital collaboration tools, these information radiators are clearly
made transparent through obvious links and easy access.

Low-fidelity tactile information radiators are our favorite because they’re in your
face and can’t be ignored, even unintentionally. They are referenced more fre-
quently than digital tools, which you have to click or search to find. One way that
a scrum master creates an environment for team success is by ensuring transpar-
ency of useful artifacts through information radiators.

TABLE 11-1 Common Roadblocks and Solutions
Roadblock Action

The development team needs simulation
software for a range of mobile devices so
that it can test the user interface and
functionality.

Do some research to estimate the cost of the software, prepare
a summary with the product owner, and have a discussion
about funding. Process the purchase through procurement,
and deliver the software to the development team.

Management wants to borrow a develop-
ment team member to write a couple of
reports. All your development team mem-
bers are fully occupied.

Tell the requesting manager that the person is not available
and probably will not be for the duration of the sprint. Recom-
mend that the requester discuss the need with the product
owner so he or she can prioritize it against the rest of the prod-
uct backlog. As you’re likely a problem solver, you may want to
suggest alternative ways in which the manager could get what
he or she needs.

A development team member can’t move
forward on a user story because he or she
does not fully understand the story. The
product owner is out of the office for the
day on a personal emergency.

Work with the development team member to determine if any
work can happen around this user story while waiting for an
answer. Help locate another person (stakeholder, customer, or
subject matter expert) who could answer the question. Failing
that, ask the development team to review upcoming tasks (not
related to this stopped one) and move things around to keep
progressing.

A user story has grown in complexity and
now appears to be too large for the sprint
length.

Have the development team work with the product owner to
break the user story down so that some demonstrable value
can be completed in the current sprint and the rest can be put
back into the product backlog. The goal is to ensure that the
sprint ends with completed user stories, even smaller ones,
rather than incomplete user stories.

236 PART 3 Agile Planning and Execution

Information radiators that teams find helpful include the following:

 » Product vision statement and product roadmap: Provides constant
visibility and clarity on the strategic product direction. See Chapter 9.

 » Product canvas: Visualizes personas, needs, objectives, and other consider-
ations established at the beginning of product development, and can be
updated as the scrum team learns more about the customer and market-
place. See Chapter 4.

 » Product backlog: Helps scrum team members and stakeholders visualize
product capability and what priorities are coming up next. See Chapter 9.

 » Sprint backlog: Displays the scope of the sprint and the status of each task.

 » Task board: Displays the status of each user story in the sprint. See an
example of a task board earlier in this chapter.

 » Team working agreement: Reminds the team of the behaviors it agreed to
uphold as it works together. The agreement can be updated during sprint
retrospectives and other team discussions. See Chapter 8.

 » Release and sprint burndown charts with goals: Visualizes daily the
progress and trends of each iteration towards goals. See Chapter 10.

 » Definition of done: Reminds the team what shippability means and the work
each user story requires. Updated during retrospectives and as the team’s
abilities evolve. See Chapters 2, 10, 12, and 17.

 » Personas: Reminds the team through visualization of who their customers
are as the team performs their work. See Chapter 4.

 » Agile Manifesto, Agile Principles, and scrum values: Reminds the team of
the guiding values and principles it is trying to enable, and are referred to
frequently by scrum masters and agile mentors as they coach the team
throughout the day. See Chapters 2 and 7.

So far in this chapter, you have seen how the scrum team starts its day and works
throughout the day. The scrum team wraps up each day with a few tasks as well.
The next section shows you how to end a day within a sprint.

The End of the Day
At the end of each day, the development team reports on the progress of tasks by
updating the sprint backlog with which tasks were completed and how much
work, in hours, remains to be done on new tasks started. Depending on the tool

CHAPTER 11 Working throughout the Day 237

that the scrum team uses for tracking progress, the sprint backlog data may auto-
matically update the sprint burndown chart as well.

Update the sprint backlog with the amount of work remaining — not the amount
of time already spent — on open tasks. The important point is how much time and
effort remains, which informs the team as to whether it is on track to meet its
sprint goal. If possible, avoid spending time tracking how many hours were spent
working on tasks, which is less necessary with self-correcting agile models. Also,
we follow the rule that it should take a development team less than one minute to
update enterprise status reporting. If it’s taking longer than that, you have the
wrong tool. Our free sprint backlog template mentioned earlier in the chapter can
help with this. To download it, go to www.dummies.com/go/agileproject
managementfd3e.

The product owner should also update the task board at least at the end of the day,
and move any user stories that have passed review to the Done column.

The scrum master should review the sprint backlog or task board for any risks or
impediments before the next day’s daily scrum.

The scrum team follows this daily cycle until the end of the sprint, when it will be
time to step back, inspect, and adapt at the sprint review and the sprint retrospec-
tive meetings.

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 239

Chapter 12
Showcasing Work,
Inspecting, and Adapting

At the end of each sprint, the scrum team gets a chance to put the results of
its valuable work on display in the sprint review. The sprint review is
where the product owner and the development team demonstrate to the

stakeholders the sprint’s completed and potentially shippable functionality. In the
sprint retrospective, the scrum team (the product owner, development team, and
scrum master) review how the sprint went and determine possible improvement
opportunities for the next sprint. Underpinning both events is the agile concept of
inspect and adapt, which Chapter 9 explains.

In this chapter, you discover how to conduct a sprint review and a sprint
retrospective.

The Sprint Review
The sprint review is a meeting to review and demonstrate the shippable and valu-
able functionality that the development team completed during the sprint, and for
the product owner to gather feedback and update the product backlog accordingly.
The sprint review is open to anyone interested in reviewing the sprint’s accom-
plishments. This means all stakeholders get a chance to see progress on the prod-
uct and provide feedback.

IN THIS CHAPTER

 » Showcasing work and collecting
feedback

 » Reviewing the sprint and improving
processes

240 PART 3 Agile Planning and Execution

The sprint review is stage 6 in the Roadmap to Value. Figure 12-1 shows how the
sprint review fits into agile product development.

The following sections show you what you need to do to prepare for a sprint
review, how to run a sprint review meeting, and the importance of collecting
feedback.

Preparing to demonstrate
Preparation for the sprint review meeting should not take more than a few min-
utes at most. Even though the sprint review might sound formal, for scrum teams,
the essence of showcasing is informality. The meeting needs to be prepared and
organized but doesn’t require flashy materials. Instead, the sprint review focuses
on demonstrating what the development team has done.

If your sprint review is overly showy, ask yourself if you’re covering up for not
spending enough time developing. Get back to working on value — creating a
working and shippable product. Pageantry is the enemy of agility.

The preparation for the sprint review meeting involves the product owner and the
development team, facilitated by the scrum master as needed. The product owner
knows exactly what the development team completed in the sprint because he or
she was working alongside them to accept or reject the items completed as valu-
able and shippable. The development team needs to be ready to demonstrate com-
pleted, shippable functionality.

The time needed to prepare for sprint review should be minimal — usually no
more than 20 minutes — just enough to make sure everyone knows who is doing
what and when, so the demonstration goes smoothly.

Work not delivered has no business value. Within the context of a single sprint,
shippable functionality means that the development team has satisfied its definition
of done for each requirement, and the product owner has verified that the work
product meets all acceptance criteria and could be released, or shipped, to the mar-
ket if the value and timing are right for the marketplace. The actual release may

FIGURE 12-1:
The sprint review

in the Roadmap
to Value.

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 241

be at a later time, per the communicated release plan. Find out more about ship-
pable functionality in Chapter 11.

For the development team to demonstrate the functionality in the sprint review,
it must be complete according to the definition of done. In other words, the prod-
uct increment is fully

 » Developed

 » Tested

 » Integrated

 » Documented

As user stories are moved to a status of done throughout the sprint, the product
owner and development team should check that the product meets these stan-
dards as well as the user stories’ acceptance criteria. This continuous validation
throughout the sprint reduces end-of-sprint risks and helps the scrum team
spend as little time as possible preparing for the sprint review.

Knowing the completed user stories and being ready to demonstrate those stories’
functionality prepare you to confidently start the sprint review meeting.

The sprint review meeting
Sprint review meetings have three activities: Demonstrate and showcase the
scrum team’s finished work, allow stakeholders to provide feedback on that work,
and make product adaptations based on reality and stakeholder feedback.
 Figure 12-2 shows the different loops of feedback a scrum team receives about a
product.

FIGURE 12-2:
Agile project

feedback loops.

242 PART 3 Agile Planning and Execution

This cycle of feedback repeats throughout the project as follows:

 » Each day, development team members work together in a collaborative
environment that encourages feedback through peer reviews and informal
communication.

 » Throughout each sprint, as soon as the development team completes each
requirement, the product owner provides feedback by reviewing the working
functionality for acceptance. The development team then immediately
incorporates that feedback, if any, to satisfy the user story’s acceptance
criteria. When the story is complete, the product owner gives final acceptance
of the functionality created for the user story, according to the user story’s
acceptance criteria.

 » At the end of each sprint, project stakeholders provide feedback about
completed functionality in the sprint review meeting.

 » With each release, end-customers provide feedback about new working
functionality.

The sprint review usually takes place later in the day on the last day of the sprint,
often a Friday for a sprint that starts on a Monday. One of the rules of scrum is to
spend no more than four hours in sprint review for a one-month sprint, so you
usually spend no more than one hour in a sprint review meeting for every week of
the sprint, as shown in Figure 12-3.

Here are some guidelines for your sprint review meeting:

 » No slides! Show actual working functionality. Refer to the sprint backlog if you
need to display a list of completed user stories.

 » The entire scrum team should participate in the meeting.

FIGURE 12-3:
Ratio of sprint

review meeting to
sprint length.

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 243

 » Anyone who is interested in the product may attend. The product stakeholders,
the summer interns, and the CEO could all theoretically be in a sprint review.
Customers may also be invited whenever available.

 » The product owner introduces the release goal, the sprint goal, and the new
capabilities.

 » The development team demonstrates the working product increment
completed during the sprint. Typically, the development team showcases new
features or architecture. When negative or critical feedback is given, resist the
temptation to become defensive because it will discourage stakeholder
feedback.

 » The demonstration should be on equipment and environments as close as
possible to the planned production environment. For example, if you’re
creating a mobile application, present the features on a smartphone —
perhaps hooked up to a monitor — rather than from a simulator on a laptop.

 » The stakeholders can ask questions and provide feedback on the demon-
strated product increment.

 » Do not use non-disclosed rigged functionality, such as hard-coded values and
other programming shortcuts that make the application look more mature
than it currently is. Rigged functionality creates more work for the scrum team
in future sprints, catching up to what the stakeholders think already exists.
Build trust by setting accurate expectations.

 » Sprint reviews are excellent opportunities to reflect with transparency on the
remaining budget to help the product owner evaluate the value of the
remaining backlog.

The formula AC+OC>V, which is discussed in Chapter 15, is helpful here for
deciding when to stop or shift development. When the actual cost (AC) plus
the opportunity cost (OC) of the future development is greater than the
value (V), stop or shift development. Sprint reviews are great opportunities for
concluding with stakeholders that future investment in the feature or product
development should end.

 » The product owner can lead a discussion about what is coming next based on
the features just presented and new items added to the product backlog
during the current sprint.

By the time you get to the sprint review, the product owner has already seen
the functionality for each of the user stories that will be presented and has agreed
that they are complete. If the product owner does not accept a user story that the
development team worked on, the story doesn’t get demonstrated in the sprint
review. As the product is iteratively built sprint after sprint, the sprint review is
critical for ensuring alignment with the stakeholders and the product vision.
Every sprint, the team should be obsessed with solving customer problems.

244 PART 3 Agile Planning and Execution

The sprint review meeting is valuable for the development team because it can
show its work to stakeholders and customers and get its efforts acknowledged.
The meeting contributes to development team morale, keeping the team moti-
vated to accomplishing the product vision, solving customer problems, and
achieving the desired business outcomes. Stakeholder confidence and trust in the
development team increases as they hear the team use business language during
the product demonstration. (Another benefit of having stable teams is that they
retain hard-earned knowledge about the customer and the business.)

Inspection is a valuable tool. The largest number of world records are broken at
the Olympics. Why? Because millions of people from all over the world are watch-
ing. Sprint reviews provide a similar, albeit much smaller, stage for scrum teams.
Accountability is higher because of the frequently exposed transparency of their
work.

Next, you see how to note and use the stakeholders’ feedback during the sprint
review meeting.

Collecting feedback in the sprint
review meeting
Gather sprint review feedback informally. The product owner or scrum master can
take notes on behalf of the development team, as team members often will be
engaged in the presentation and resulting conversation. Capturing feedback pub-
licly on a whiteboard, for example, validates that the feedback was given and
received as intended. The transparency also prevents duplicates.

Because the sprint goal was selected based on the team’s assumptions about what
the customer wanted, the sprint review offers the team the opportunity to validate
its assumptions with stakeholders and, even better, customers.

Keep in mind the example project we use throughout the book: a mobile applica-
tion for XYZ Bank. Stakeholders responding to functionality they saw for the XYZ
Bank mobile application might have comments such as the following:

 » From a person in sales or marketing: “You might want to consider letting the
customers save their preferences, based on the results you showed. It will
make for a more personalized experience going forward.”

 » From a functional director or manager: “Given what I’ve seen, you might be
able to leverage some of the code modules that were developed for the ABC
project last year. They needed to do similar data manipulation.”

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 245

 » From someone who works with the quality or user experience professionals
in the company: “I noticed your logins were pretty straightforward. Will the
application be able to handle special characters?”

New user stories may come out of the sprint review. These stories could be new
features or changes to existing functionality. Both are welcome.

In the first few sprint reviews, the scrum master may need to remind stakeholders
about agile principles and practices. Some people hear the word demonstration and
immediately expect fancy slides and printouts. The scrum master can shield the
scrum team by managing these expectations and helping stakeholders uphold
agile values and practices.

The product owner needs to add any new user stories to the product backlog and
order those stories by priority. The product owner also adds back to the product
backlog any stories scheduled for the current sprint but not completed, and reor-
ders those items based on the most recent priorities.

The product owner needs to complete updates to the product backlog in time for
the next sprint planning meeting.

When the sprint review is over, it’s time for the sprint retrospective. You may
want to take a brief break between the sprint review and the sprint retrospective
so that scrum team members can come to the retrospective discussion fresh and
relaxed.

Having just completed the sprint review, the scrum team will come into the ret-
rospective ready to inspect its processes and will have ideas for adaptation.

The Sprint Retrospective
The sprint retrospective is a meeting in which the product owner, development
team, and scrum master discuss how the sprint went and what they can do to
improve the next sprint. The scrum team should conduct this meeting in a self-
directed way. If managers or supervisors attend sprint retrospectives, scrum team
members will avoid being open with each other, which limits the effectiveness of
the team’s ability to inspect and adapt in a self-organizing way.

The team might invite others with whom they regularly interact (such as stake-
holders) to participate in the sprint retrospective, but these invitations are gener-
ally an exception.

246 PART 3 Agile Planning and Execution

The sprint retrospective is stage 7 in the Roadmap to Value. Figure 12-4 shows
how the sprint retrospective fits into agile product development.

The goal of the sprint retrospective is to continuously improve your processes,
environment, collaboration, skillsets, practices, and tools. Improving and cus-
tomizing how people work together according to the needs of your scrum team
increases scrum team morale, improves effectiveness in achieving desired out-
comes, and increases velocity — work output. (See Chapter 15 for details on
velocity.)

However, what works for one team won’t necessarily work for another team.
Managers outside the scrum team should not dictate how all scrum teams should
overcome their challenges and should instead allow them to find the best solu-
tions for themselves.

Your sprint retrospective results may be unique for your scrum team. For exam-
ple, members of one scrum team we worked with decided that they would like to
come to work early and leave early, so they could spend summer afternoons with
their families. Members of another team at the same organization felt that they
did better work late at night and decided to come to the office in the afternoon and
work into the evenings. The result for both teams was increased morale, effec-
tiveness, and velocity.

Use the information you learn in the retrospective to review and revise your work
processes and make your next sprint better.

Agile approaches — particularly scrum — quickly reveal product development
problems. Scrum doesn’t fix problems; it simply exposes them and provides a
framework for inspecting and adapting exposed issues. Data from the sprint
backlog shows exactly where the development team has been slowed down. The
development team talks and collaborates. These tools and practices help reveal
inefficiencies and allow the scrum team to refine practices to improve, sprint after
sprint. Pay attention to what gets exposed. Don’t ignore it and don’t work
around it.

FIGURE 12-4:
The sprint

retrospective in
the Roadmap to

Value.

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 247

In the following sections, you find out how to plan for a retrospective, how to run
a sprint retrospective meeting, and how to use the results of each sprint retro-
spective to improve future sprints.

Planning for retrospectives
For the first sprint retrospective, everyone on the scrum team should think about
a few key things and be ready to discuss them. What went well during the sprint
and what should we keep doing more of? What would we change, and how?

Everyone on the scrum team may want to make a few notes beforehand or even
take notes throughout the sprint. The scrum team could keep the roadblocks from
the sprint’s daily scrum meetings in mind. For the second sprint retrospective
forward, you can also start to compare the current sprint with prior sprints, and
track progress on the improvement efforts from sprint to sprint. In Chapter 11, we
mention saving sprint backlogs from prior sprints; this is one instance where they
might come in handy.

If the scrum team has honestly and thoroughly thought about what went right and
what could be better, it will go into the sprint retrospective ready to have a useful
and actionable conversation.

STOPPING THE LINE
Taiichi Ohno, who built the Toyota Production System in the 1950s and ’60s — the
beginning of lean manufacturing — decentralized assembly-line management to
empower the line workers to make decisions. Line workers actually had a responsibility
to stop the line by pushing a red button when they found a defect or problem on the
assembly line. Traditionally, plant managers viewed stopping the line as a failure and
focused on running the assembly line at capacity as many hours of the day as possible
to maximize throughput. Ohno’s philosophy was by removing constraints as they occur,
you proactively create a better system rather than trying to optimize your existing
process.

When first introduced, the productivity of managers who implemented this practice
took an initial drop because they spent more time fixing defects in the system than the
managers’ teams who did not adopt the practice. The latter teams declared this a vic-
tory at first. However, it didn’t take long until the former teams not only caught up but
also began producing more quickly, more cheaply, and with fewer defects and variance
than the teams who weren’t making continuous improvements in their system. This
process of regular and continuous improvement is what made Toyota so successful.

248 PART 3 Agile Planning and Execution

The retrospective meeting
The retrospective meeting is an action-oriented meeting. The scrum team imme-
diately applies what it learned in the retrospective to the next sprint.

The sprint retrospective meeting is an action-oriented meeting, not a justification
meeting. If you are hearing because . . ., the conversation is moving away from
action and toward rationale.

One of the rules of scrum is to spend no more than three hours in sprint retro-
spective for a one-month sprint. So you usually spend no more than 45 minutes
in a sprint retrospective meeting for every week of the sprint. Figure 12-5 shows
a quick reference of this timetable.

The sprint retrospective should cover three primary questions:

 » What went well during the sprint?

 » What would we like to change?

 » How can we implement that change?

The following areas are examples of topics for inspection:

 » Results: Compare the amount of work planned with what the development
team completed. Review the sprint or release burndown charts and what
they tell the team about how it’s working.

 » People: Discuss team composition and alignment.

 » Relationships: Talk about communication, collaboration, and how the team
works together.

FIGURE 12-5:
Ratio of sprint
retrospective

meeting to sprint
length.

CHAPTER 12 Showcasing Work, Inspecting, and Adapting 249

 » Processes: Go over support, development, and peer review processes.

 » Tools: How are the different tools working for the scrum team? Think about
the artifacts, electronic tools, communication tools, and technical tools.

 » Productivity: How can the team improve productivity and get the most work
done in the next sprint while maintaining a sustainable pace? Remember
Principle 8, “Agile processes promote sustainable development.” Perhaps there
are opportunities to “maximize the amount of work not done” (Principle 10) or
to work smarter?

If the team works in one-week sprints, it will have nearly 52 opportunities each
year to hold a retrospective. To maintain engagement in each retrospective, many
retrospective formats exist, and it’s helpful for the team to have variety and to
have these discussions in a structured format. Esther Derby and Diana Larsen,
authors of Agile Retrospectives: Making Good Teams Great (Pragmatic Bookshelf,
2006), offer a great framework for sprint retrospectives that keep the team focused
on discussions that will lead to real improvement:

1. Set the stage.

Establishing the goals and scope for the retrospective up front will help keep
your scrum team focused on providing the right kind of feedback later in the
meeting. As you progress into later sprints, you may want to have retrospec-
tives that focus on one or two specific areas for improvement.

2. Gather data.

Discuss the facts about what went well in the last sprint and what needed
improvement. Create an overall picture of the sprint; consider using a
whiteboard to write down the input from meeting attendees.

3. Generate insights.

Take a look at the data gathered and come up with ideas about how to make
improvements for the next sprint.

4. Decide what to do.

Determine — as a team — which ideas you want to put into place. Decide on
specific actions you can take to make the ideas reality.

5. Close the retrospective.

Reiterate your plan of action for the next sprint. Thank people for contributing.
Also find ways to make the next retrospective better!

For some scrum teams, it might be difficult to open up at first. The scrum master
may need to ask specific questions to start discussions. Participating in retrospec-
tives takes practice. What matters is to encourage the scrum team to take respon-
sibility for the sprint — to truly embrace being self-managing.

250 PART 3 Agile Planning and Execution

In other scrum teams, a lot of debate and discussion ensues during the retrospec-
tive. The scrum master facilitates these discussions to guide them towards the
desired outcome and keeps the meeting within its allotted time.

Any action item coming out of a sprint retrospective should be added to the prod-
uct backlog. All work the scrum team will do to achieve the product vision, such as
features, technical debt, overhead, and improvements, should be added and pri-
oritized in the product backlog. Scrum teams should agree to include at least one
improvement item from a previous retrospective in each sprint to continuously
improve how they go about the work of delivering potentially shippable function-
ality every sprint.

Be sure to use the results from your sprint retrospectives to inspect and
adapt every sprint throughout your product development, not just when it is
convenient.

Inspecting and adapting
The sprint retrospective is one of the best opportunities you have to put the ideas
of inspect and adapt into action. You came up with challenges and solutions dur-
ing the retrospective — don’t leave those solutions behind after the meeting.
Make the improvements part of your work every day.

You could record your recommendations for improvement informally. Some
scrum teams post the actions identified during the retrospective meeting in the
team area to ensure visibility and action on the items listed. Don’t forget to add
action items to the product backlog as a reminder to implement them during an
upcoming sprint.

In subsequent sprint retrospective meetings, it’s important to review the evalua-
tions of the prior sprint and make sure you put the suggested improvements into
place. High-performing teams have learned how to convert retrospectives into
velocity acceleration.

4Agility
Management

IN THIS PART . . .

Incrementally pursue creating value (outcomes) rather
than meeting specifications (outputs).

Respond effectively to changes in scope.

Manage vendors and contracts for success.

Monitor and adjust schedules and budget.

Self-organize for optimal communications.

Inspect and adapt to increase quality and mitigate risk.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 253

Chapter 13
Managing a Portfolio:
Pursuing Value over
Requirements

Organizational leaders today face the daunting challenge of delivering
value faster than ever before. With limited resources and funding to keep
up with rapidly changing marketplaces, deciding which product invest-

ment opportunities will maximize an organization’s return is not easy. In this
chapter, we share various agile approaches and techniques used to manage a
product portfolio. Portfolio management helps organizations to pursue value
(outcomes) over meeting requirements (outputs).

Like product development, agile portfolio management is based on the Agile
Manifesto values and principles and yields the following results:

 » Highest business value delivered first

 » More frequent delivery of value

 » Lowered cost of pivoting (reprioritization)

 » Higher transparency

IN THIS CHAPTER

 » Learning how agile portfolio
management is different

 » Discovering ways to make portfolio
investment decisions

 » Learning how to manage an agile
product portfolio

254 PART 4 Agility Management

 » Timely data from shorter feedback loops

 » Ease in managing by exception due to team and product transparency

 » Small, incremental continuous improvement

 » Sustainable productivity

 » Improved morale due to improved focus and sustainable pace

 » Not only fulfilled requirements, but also maximized value

Understanding the Differences in Agile
Portfolio Management

Because scrum teams continually focus on the highest value and risk items first,
agile product development efforts often run out of value before they run out of
time or money. The same can be said of a portfolio of products. In fact, many of
the same principles for maximizing value from a single product can be applied to
a portfolio of products.

Agile portfolio management is the art and science of selecting and overseeing a
group of product investments that meet an organization’s long-term objectives
and risk tolerance. Managing a portfolio of products requires the ability to weigh
strengths and weaknesses, opportunities, and threats across the full spectrum of
opportunities. The choices involve trade-offs: short term versus long term,
expanding market segments versus contracting ones, domestic versus interna-
tional, and growth versus existing product investment.

Weighing the various trade-offs truly is an art and a science. Product owners and
portfolio leaders evaluate strengths, weaknesses, opportunities, and threats
(SWOT). Effective portfolio management enables maximization of value for cus-
tomers and stakeholders.

A SWOT analysis can be conducted on anything the team wants, such as its prod-
uct, company, team, or portfolio. The sky is the limit. After determining the topic
of their conversation, the team brainstorms the strengths, weaknesses, opportu-
nities, and strengths. The outcome of the analysis is a concise summary of the
most important factors to be considered by the team, which may guide the prod-
uct portfolio, backlog, vision, and roadmap.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 255

All agile principles can be helpful for managing organizational product
portfolios:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

As a portfolio of products is evaluated from a macro level, key decisions must be
made about which product investment opportunities should be pursued in gen-
eral, which should be pursued next, and which might be pursued later. A careful
balance must also be set to ensure that the organizational and team capacity is
healthy and thriving. Overburdening leads to reduced innovation, tiredness, and
acceptance of the status quo.

Should we invest?
As with financial investments, capital budgeting uses a key metric to estimate the
profitability of potential investments: the internal rate of return (IRR). IRR con-
siders the cost of the initial investment against the net present value of the future
stream of revenue or cost savings. The higher the IRR, the more confident a port-
folio leader can be that the product investment will be profitable.

256 PART 4 Agility Management

These same financial return principles can be applied to product portfolio man-
agement. The cost of the initial product, including development, labor, licensing,
and maintenance, is compared to the future stream of annualized revenue or cost
savings. If the internal rate of return exceeds the cost of capital and the initial
investment cost, it might be a worthwhile investment. Other costs to consider are
the balance between CapEx (capital expenditures) and OpEx (operational expen-
ditures). The more expenses that can be capitalized, the more profitable an
investment.

Capital expenditures, or CapEx, are funds used by a company to acquire, upgrade,
and maintain physical assets such as property, buildings, an industrial plant,
technology, and equipment. CapEx is often used to undertake new projects or
investments by the firm. An operating expense — also known as an operating
expenditure, operational expense, or operational expenditure (OpEx) — is an
ongoing cost for running a product, business, or system.

Understanding the internal rate of return and balance between CapEx and OpEx
helps answer the question, “Should we invest?” Following are other factors to
consider in forecasting financial product return:

 » Value and risk: Portfolio prioritization is a factor of value and risk. Value,
because the portfolio must meet the customer’s needs. Risk, to enable failing
early and failing cheap, giving you the longest runway for finding a solution
when the system is the simplest and the most financial resources are
available.

 » Short-term versus long-term: Trade-offs of short-term gains for long-term
value.

 » Product mix: Balance of products to diversify and take advantage of product
lifecycles of both new and sunsetting products (discovery to market).

We discuss each in more detail next.

Factors for forecasting product
investment returns
Several factors, such as value and risk prioritization, short-term versus long-
term, and balancing the product mix, should be considered when forecasting
product investment returns. We discuss each of these in the next section.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 257

Value and risk prioritization
Agile product teams are encouraged to focus on one thing, do it well to comple-
tion, and then move as a team to the next most important thing. The team works
on one item at a time to avoid the significant cost delays of context switching.

Prioritization across a portfolio is similar. The portfolio may have a backlog of
investment opportunities, but wise portfolio leaders reduce work in progress and
focus on one opportunity at a time. They evaluate the desired outcomes of their
focus, and once acceptable, move to the next opportunity.

They prioritize the portfolio according to value and risk. Value criteria could
include return on investment and internal rate of return, market share, revenue,
cost savings, corporate image, product enhancements, maintenance, security,
regulatory compliance, and more. Risk criteria may include the risk of users
adopting a new product, of using a technology unfamiliar to the organization, of
the organization being unable to deliver the value in the time frame needed, and
more. Portfolio prioritization is a function of value and risk. Learn more about
using value and risk for prioritization in Chapter 9.

Figure 13-1 shows a helpful value and risk matrix tool that product portfolio lead-
ers use to evaluate various product investment opportunities. Products in the
highest value, highest risk quadrant should be attempted first while products with
the lowest value, highest risk should be avoided.

FIGURE 13-1:
Risk versus value

quadrant.

258 PART 4 Agility Management

A prioritized and ordered portfolio of product opportunities enables teams to pull
from the backlog of investment opportunities. After the first available team pulls
from the backlog, the next team checks to see if the first team needs help; if not,
it pulls the next most valuable product investment opportunity, and so forth. This
approach ensures that the highest valuable product investment opportunities

GAINING ORGANIZATIONAL AND
PORTFOLIO PRIORITY ALIGNMENT
A healthcare client of ours struggled with annual planning due to the traditional project
management approach used by the organization. Capital was reserved and forecasts
were continually updated throughout the year so allocation adjustments could be
made. Managers watched the CapEx and OpEx targets like hawks. Progress was difficult
to make with so many active and dependent pieces of work going all at once. People
with specialized skills were required to work on multiple projects at the same time.

In planning the new year, a professional agile mentor was brought in to help. A work-
shop was scheduled to help them work through the budgeting and productivity chal-
lenges. The mentor walked the group through an approach that helped them to begin
by agreeing to criteria for evaluating risk and value.

Each leader then filled out 3x5 cards with the title of their planned product investment
opportunity and placed it on a risk-value matrix on the wall. In the value label field, they
recorded their estimated return on investment ($500K, $300K, $100K, and so on) and
defended their ROI estimate as each card was discussed.

After all the cards were placed on the wall, the first acknowledgment they made was
that there were too many investment opportunities — their plan was unrealistic. The
second observation was that they could prioritize their portfolio by understanding the
value, risk, and rough order estimate. The subset of the most valuable opportunities
emerged by priority and, more importantly, had organizational alignment.

The client then laid the best opportunities in a spectrum across the wall in prioritized
order, starting with the most valuable/most risky opportunities on the left and the least
valuable/least risky opportunities on the right. In essence, they created their backlog of
product portfolio investment opportunities.

The results were significantly improved. Highest priority opportunities were either suc-
cessful earlier or the high risk, low value opportunities were quickly removed from the
list. The organization’s teams could pull from a prioritized backlog of opportunities
when they became available, allowing more and more of the organization’s talent to
focus on delivering the work that mattered most at a pace in their available capacity.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 259

receive the organization’s attention first. It also helps to keep the work in prog-
ress (WIP) low while moving at the pace of the organization’s capability.

Short-term versus long-term decisions
Portfolio leaders, in partnership with product owners, make short-term versus
long-term product portfolio decisions. The question they often ask is, “Will my
short-term product investment opportunity be thrown away?” Or, “Will my short-
term investment create a path to accomplish the longer-term strategic vision?”

SHORT-TERM PAYMENT OF
ORGANIZATIONAL TECHNICAL DEBT
YIELDS LONG-TERM RESULTS
The short-term decision to invest in paying down organizational technical debt weighed
heavily on the minds of the healthcare organization’s newly formed agile transition
teams (ATT) as they took seriously their responsibility to support the agile transforma-
tion. (See Chapter 18 to learn more about agile transition teams.) As the pilot scrum
teams started working, the lack of test automation became exposed. Thousands of test
cases that could have been automated were manually used day-in and day-out by ever-
yone. Each new day of created functionality caused more manual test cases to be cre-
ated, making the pile of manually testing debt even higher.

After consulting with the scrum teams, the ATT decided that the best approach for
addressing the debt was to focus a new scrum team on the problem.

The first item on the new scrum team’s backlog was to build a testing framework that
could be used by all teams. Each pilot team embedded the new testing framework in its
definition of done. The framework allowed all the teams to automate their own tests,
adding them to the shared pool of tests. While the scrum teams automated the tests on
their new sprint’s work, the newly formed test automation scrum team tackled the back-
log of test automation debt using the new framework. Test case by test case, the debt
was paid down.

The product’s quality as well as the teams’ productivity improved. Changes were much
easier to introduce and the teams shifted priorities effortlessly. Manual testers gained
new skills in building test automation, which opened doors for learning other skills.

In the long-term, the velocity, or relative pace, of development across all the teams
increased due to the investment in automation. The short-term payment of technical
debt yielded long-term results.

260 PART 4 Agility Management

Scrum teams frequently ask, “What should we do next?” Decisions must be made
to either fix something or build or implement something new. A balance between
proactive work and reactive work as well as the decision to pay down technical
debt or invest in automation or platform upgrades for faster product development
must be decided.

To answer these short-term versus long-term decisions, portfolio leaders work
closely with product owners, stakeholders, and development teams. The strong
communication cycles and quick feedback loops inherent in agile approaches
inform their decisions. As they interact with stakeholders and product owners,
they learn about customer needs and opportunities. The product owners and
stakeholders then quickly build product vision statements and roadmaps with
development teams to gain funding support. Release plans and sprint plans fol-
low. Initial sprints give early information about the viability of the opportunity.
With minimal investment, information is revealed to inform their short-term
versus long-term decision.

Balancing the product mix
Product mix, also known as product assortment, refers to the total number of
product lines an organization offers to its customers. For example, think of the
different products sold by Nike (shoes, socks, pants, shirts, sweatshirts, team
gear, sports equipment, and so on). The four dimensions to a company’s product
mix include width, length, depth, and consistency:

 » Width: The number of product lines that an organization offers or the variety
offered, for example, the number of product lines from shoes to other
clothing or team gear.

 » Length: The number of products in the company or a given product line, for
example, the number of different running shoe types.

 » Depth: The total number of variations for each product, such as the various
sizes of shoes, styles, or colors.

 » Consistency: The connection between products in the product line and the
way they reach the consumer. It describes how closely product lines are
related to each other — in terms of use, manufacturing, and distribution. For
example, two lines of shoes may be used, manufactured, and distributed in
the same way so that their product lines are consistent.

The product mix is important in determining the image of your business and
brand, because it helps you maintain consistency in the eyes of your target market.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 261

Various strategies can be employed to balance the product mix. Small companies
usually start with a product mix limited in width, depth, and length and have a
high level of consistency. Over time, the organization may want to differentiate
products or acquire new ones to enter new markets. They may also add to their
lines similar products that are of higher or lower quality to offer different choices
and price points. They stretch the product line — upward to add more expensive
products and downward to add lesser quality, lower priced items.

A well-balanced marketing mix in a product portfolio is important for a number
of reasons. It helps portfolio leaders to maximize the value of their investment. It
defines the steps necessary to make a profit by differentiating the products and to
take advantage of new markets, customer segments, and price points. Lastly, it
sets the course for product marketing.

Managing Agile Product Portfolios
The many moving parts involved in managing an agile product portfolio can make
the process complex. Effective portfolios focus on setting realistic and strategic
priorities, and reducing work in progress so portfolio items can get completed as
quickly as possible. They adhere closely to Principle 10: Simplicity, the art of max-
imizing the amount of work not done — is essential.

Brent Barton, in his article “The 5 Simple Rules of Agile Portfolio Management,”
describes the challenges when managing and planning a product portfolio. He
concluded that planning new capabilities for multiple products in an organiza-
tional silo was like predicting the weather in micro-climates with a less than
50 percent accuracy. The accuracy was so low because the micro-climate meteo-
rologists weren’t looking (or couldn’t look) beyond their own domain to account
for how the bigger system affected weather patterns. In other words, product
portfolio planning without the proper perspective for reasonably matching capac-
ity to demand is nearly impossible.

For this reason, Barton defined five simple rules to reduce the complexity of agile
product portfolio management:

 » All work is forced ranked. Organizations that make everything the highest
priority cannot articulate real priorities. Force ranking a portfolio of investment
opportunities leads to clarity and focus. Similar to answering the “Should we
invest?” question, portfolios are best prioritized when they consider value to
the customer as well as business risk, technical risk, or both. Tackle the most
valuable and most risky opportunities first.

262 PART 4 Agility Management

In his book Essentialism: The Disciplined Pursuit of Less (Virgin Books), Greg
McKeown said:

The word priority came into the English language in the 1400s. It was
singular. Only in the 1900s did we pluralize the term and start talking
about “priorities.” Illogically we reasoned that by changing the word we
could bend reality.

• Operate on good enough data. It is unrealistic to expect to have perfectly
detailed data for all portfolio decisions when they need to be made.
Certain levels of detail in one area do not necessitate expensive-to-obtain
detail in other areas. As with all empirical control processes, start with
what you know, and then inspect and adapt based on what is learned.

• Near-term capacity is fixed. Make investment opportunity decisions
based on existing organizational capacity. Adding complexity by forecast-
ing team or skill counts based on the hope influencing portfolio manage-
ment outcomes is problematic. Forecasting and onboarding new teams in
a timely manner is more challenging than leaders want to acknowledge.

• Each unique value-based delivery capability has a portfolio. Simplify
and decompose the work into the smallest, most valuable increments as
possible. Enable teams in the portfolio to become highly aligned and highly
autonomous. Connect their work to strategy through progressive
elaboration.

• Each portfolio has one intake system. Strategic decisions in a portfolio
should have full visibility into the entire scope of work required to inno-
vate, build, release, evolve, support, and sunset technology.

These five simple rules for agile product portfolio management help reduce com-
plexity, enable organizational focus, and reward action and speed over analysis
paralysis. Like all guidelines, they serve as a good starting point but will need to
be adjusted upon inspection.

Other factors to consider for effectively prioritizing a product portfolio follow:

 » Visualize the portfolio. A map to your destination is easier to follow than
verbal or written directions. Similarly, visualization enables portfolios of
product teams to collaborate more effectively. In a self-organizing environ-
ment, full transparency is essential for inspecting and adapting.

Ensure that everyone can see how your product portfolio aligns to your
corporate vision, objectives (desired outcomes), success criteria, and strategy.
Your roadmap of products and capabilities needs to be visible and supportive
of the decision-making process. Visualization helps to inform decisions that
can be made at the last responsible moment.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 263

Figure 13-2 shows an example of a prioritized portfolio backlog of opportuni-
ties aligned with the strategic vision stack, ranked by value, risk, and estimate.

 » Optimize talent allocation. Ensure that talented scrum teams are optimized
for creating maximum benefit.

 » Evaluate product performance. Ensure that customer driven metrics are
available for adapting to changing market conditions and customer demands.

 » Determine prospective value. Determine new products to design and develop
as well as search for new ideas. Monitor your business and your competitors,
getting feedback from customers and anticipating clients’ future needs. New
technologies, laws, or regulations may also influence prospective value.

 » Search possible endeavors. Search for and invest in understanding possible
endeavors. Options include guessing at a product’s market potential, doing a
case study, or running a focus group.

 » Commence endeavors. New products or features have to be developed by
the team. Initial experimentation can help you see the market potential of the
product.

FIGURE 13-2:
Prioritized

portfolio backlog
of investment
opportunities.

264 PART 4 Agility Management

 » Incrementally fund products. Every potential endeavor requires funding,
including the primary funding for new teams for their inception or development
efforts and the budget for ongoing construction, transition, and operations after
the product launch. Instead of allocating funding for the entire development
effort, consider incrementally funding instead. For example, allocate 90 days’
worth of funding and see what kind of value can be created in that time. If
successful, fund another 90 days. This funding will also require constant
monitoring by the product owner and sponsors to ensure that the money is
spent wisely.

 » Engage vendors. Supplier or vendor management is a key aspect of agile
portfolio management. This task entails procuring or awarding contracts,
narrowing down and identifying possible vendors, overseeing ongoing
projects, and closing a contract. Ensuring that vendors enable agile principles
is essential because they’ll need to adapt with your changing priorities and
customer needs. Many times, you can use an incremental funding model with
vendors to more effectively manage portfolios. Enable product owners or
scrum masters to engage in vendor relationships early.

Table 13-1 lists important considerations for effective portfolio management with
suggestions for what to do and what not to do in each situation.

TABLE 13-1 Keys for Effective Agile Portfolio Management
Topic Do Don’t

Partner with
product
owners

Empowered product owners are close to their
customers and understand their needs and prob-
lems. Engaging product owners in portfolio deci-
sions leads to better aligned portfolios.

Don’t exclude product owners from
contract negotiations, discovery, or
portfolio decisions. Product owners are
accountable for a product’s return on
investment.

Prioritize
and limit the
work to be
done

Tackle the single, next most valuable opportunity,
do it well, validate that the desired outcomes were
achieved, and then move to the next opportunity.
Prioritization and limiting work to be done
improves speed to market and organizational
focus and builds organic cross-functional
capability.

Don’t enable teams to work on lower
value, low risk work at the expense of
the higher value, higher risk work.
Working on too many things at once
will prevent you from working on the
higher priority things that matter most
to your customer.

Focus on
balancing
demand and
capacity

Avoid overburdening teams and organizations.
Overburdening leads to tired and inefficient peo-
ple who will make more mistakes, which cause
delays and are expensive to correct. Even worse,
their ability to innovate will be constrained.

Don’t push velocity expectations onto a
team. Scrum teams are more effective
when they pull work into releases and
sprints given their capacity constraints.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 265

In Tom Demarco’s book Slack: Getting Past Burn-out, Busywork, and the Myth of Total
Efficiency (Currency), the anti-pattern of parallel product work is further explained.
Tom suggests that people and teams are not fungible (not exchangeable or
replaceable). People or teams required to support multiple product development
efforts in parallel pay a high cost in context switching. According to the American
Psychology Association, the cost can be as high as 40 percent of someone’s pro-
ductive time.

A study performed by Gloria Mark from the University of California, Irvine and
Daniela Gudith and Ulrich Klocke from Humboldt University in Germany added
that people interrupted in their work also experience higher workloads, more
stress, higher frustration, and more time pressure and effort. The same principles
apply to parallel, interrupted product development.

Figure 13-3 illustrates the difference between running serial product development
efforts (dedicated teams) and parallel efforts (thrashing teams).

In this example, a portfolio has three projects, each running in succession (seri-
ally). Assume that one unit of value can be produced in one unit of time and each
product development effort when complete produces one unit of value ($).

Topic Do Don’t

Maximize
both
internal
and external
value

Focus on creating value for your customers as well
as keeping a broader perspective of doing what’s
best for your organization. Agile product portfolio
management is more about improving your orga-
nization for the future and less about completing
projects. It’s about directing funds where they’ll
have the most effect.

Don’t focus solely on internal or exter-
nal value. History shows that internally
focused businesses who lose sight of
their customers or who neglect to take
care of their workforce cease to exist.

Re-prioritize
frequently

As market conditions and customer demands
change, inspect and adapt. Continuously prioritize
your product investment opportunities.

Don’t become irrelevant by not
adapting to change.

Deliver
value in
smaller
chunks

When planning your portfolio, focus on how small
and simple you can make the value increments
that you’ll release to the market. Doing so not only
creates a faster cashflow and return on invest-
ment but also reduces complexities and risk.

Don’t place value on a shelf, like
inventory. When a barely sufficient
amount of value is created, release it.

Avoid
parallel
product
work

Product portfolio leaders understand that organi-
zations get less done when they work on several
products at the same time. Prioritize, and then
select the next most valuable opportunity and fin-
ish it. Next, pull the next most valuable investment
opportunity only when capacity and capability are
available.

Don’t allow parallel work. Simplify
product development by reducing work
in process, which has no value.

266 PART 4 Agility Management

Thrashing the team, or causing lack of focus by multitasking or context switching,
results in at least 30 percent (as much as 40 percent) more time to finish each
effort — 33 percent for this scenario. Over the three product development efforts
(99 percent), thrashing the teams around is roughly the equivalent of an entire
effort’s length.

Going one additional unit of time past deployment of the serial efforts, the parallel
efforts finally finish and return $$$ (3$ — one $ for each effort deployed) at the end
of that period. The serial product development efforts return $$$$$$+$$$$ — 10$,
which is more than three times the return on investment (ROI) compared to par-
allel development.

Stop thrashing. Run one project at a time through one team at a time. When you
dedicate teams, everyone gets value delivered earlier, as well as an earlier and
overall higher ROI. It simply doesn’t make sense to overload your portfolio and
thrash your teams on more than one thing at a time.

Should we continue investing?
The question of whether you should continue investing is one that all portfolio
leaders in collaboration with product owners must answer. Many factors must be
considered for making the decision. Leaders and product owners consider “When
is the right time to sunset a product?” or “Have we reached the point of diminish-
ing returns, where the investment return will not be as great as other product
investments?”

FIGURE 13-3:
Financial cost of

delay due to
thrashed parallel

product
development.

CHAPTER 13 Managing a Portfolio: Pursuing Value over Requirements 267

The law of diminishing returns, also referred to as the law of diminishing marginal
returns, states that in a production process, as one input variable is increased,
there will be a point at which the marginal per unit output will start to decrease,
holding all other factors constant.

Figure 13-4 shows how to apply the law of diminishing returns to a product port-
folio. During the early stage of the portfolio, knowledge value is earned, followed
by a steep increase in customer value (or outcomes) as the new capabilities are
made available to customers. (The “highest returns” section is the most produc-
tive section of the curve in the figure.) It pays to invest more time and effort dur-
ing this stage. Next is the “diminishing returns” section, when each added input
leads to a decreasing rate of output. It’s best to stop somewhere within this phase
and “trim the tail.” In other words, more valuable opportunities should now be
considered. The last stage, “negative returns,” is the one to avoid. Not only do you
not get a return for your effort, but you decrease your overall output.

When the point of diminishing returns is met, it’s time to stop or reduce investing
in a product. In other words, it’s time to shift to the next most valuable invest-
ment opportunity using the V < AC + OC equation discussed in Chapter 15.

Inspecting and adapting to the
next opportunity
After you’ve achieved the accomplishment of getting to done, what’s next? Main-
taining a refined portfolio backlog of investment opportunities makes this

FIGURE 13-4:
The law of

diminishing
returns.

268 PART 4 Agility Management

decision easier. This section describes some keys for continuously prioritizing
and shifting to the next most valuable investment in your product portfolio.

Shifting to the next most valuable item
Shifting to the next most valuable item is easier to do when a continually priori-
tized portfolio of investment opportunities is maintained. As with a product back-
log, focus on the next portfolio backlog item.

Revising product portfolio investments
If the outcomes from your portfolio investment do not accomplish their intent, it
may be time to adjust and adapt. The beauty of an agile product portfolio is its
capability to change priorities with minimized disruption. Scrum teams that
implement shippable functionality at the end of every sprint have frequent inspec-
tion points to determine if enough value has been achieved.

Agile portfolio management ensures that an organization provides its clients
with the best value for their investment while doing what is best for the organiza-
tion. A good portfolio leader, in partnership with empowered product owners,
understands and follows agile principles. They also understand how to align the
portfolio to the strategic direction, prioritize, reduce work in progress, and help
others to join them in their journey. They pursue value (outcomes) over meeting
requirements (outputs).

CHAPTER 14 Managing Scope and Procurement 269

Chapter 14
Managing Scope and
Procurement

Scope management is part of every product development effort. To create a
product, you have to understand basic product requirements and the work it
will take to fulfill those requirements. You need to be able to prioritize and

manage scope changes as new requirements arise. You have to verify that finished
product features fulfill customers’ needs.

Procurement is also part of many product development efforts. If you need to look
outside your organization for help completing development, you should know
how to go about procuring goods and services. You will want to know how to col-
laborate with vendor teams during the product lifecycle. You should also know
something about creating contracts and different cost structures.

In this chapter, you find out how to manage scope and take advantage of agile
methods’ welcoming approach to informed change. You also find out how to man-
age procurement of goods and services to deliver product scope. First, we review
traditional scope management.

IN THIS CHAPTER

 » Seeing how agile product
development changes scope
management

 » Managing scope and scope changes
with agile techniques

 » Understanding the different
approach that agile practices bring
to procurement

 » Managing procurement

270 PART 4 Agility Management

What’s Different about Agile Scope
Management?

Historically, a large part of project management is scope management. Product
scope is all the features and requirements that a product includes. Project scope is
all the work involved in creating the project-funded features of a product.

Traditional project management treats changing requirements as a sign of failure
in up-front planning. With agile product development, however, scope is variable
so that scrum teams can immediately and incrementally incorporate learning and
feedback, and ultimately create better products. The signers of the Agile Manifesto
recognized that scope change is natural and beneficial. Agile approaches specifi-
cally embrace change and use it to make better-informed decisions and more use-
ful products.

If you use agile product development and your requirements don’t change because
you learned nothing along the way, that is a failure. Your product backlog should
change often as you learn from stakeholder and customer feedback. It’s unlikely
that you knew everything at the beginning.

Chapter 2 details the Agile Manifesto and the 12 Agile Principles. (If you haven’t
yet checked out that chapter, flip back to it now. We’ll wait.) The manifesto and
the principles answer the question, “How agile are we?” The degree to which your
approach supports the manifesto values and the principles helps determine how
agile your methods are.

The agile principles that relate the most to scope management follow:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

Agile approaches to scope management are fundamentally different than tradi-
tional methods for scope management. Consider the differences you see in
Table 14-1.

CHAPTER 14 Managing Scope and Procurement 271

At any point during agile product development, anyone — the scrum team, stake-
holders, or anyone else in the organization with a good idea — can identify new
product requirements. The product owner determines the value and priority of
new requirements and prioritizes those requirements against other requirements
in the product backlog.

TABLE 14-1 Traditional versus Agile Scope Management
Scope Management with
Traditional Approaches Scope Management with Agile Approaches

Project teams attempt to identify and
 document complete scope at the begin-
ning of the project, when the teams are
the least informed about the product.

The product owner gathers high-level requirements at the begin-
ning of product development, breaking down and further detail-
ing requirements that are going to be implemented in the
immediate future. Requirements are gathered and refined
throughout development as the team’s knowledge of customer
needs and product realities grow.

Organizations view scope change after
the requirements phase is complete as
a failure.

Organizations view change as a positive way to improve a product
as development progresses.

Changes later in development, when you know more about the
product, are often the most valuable changes.

Project managers rigidly control and
discourage changes after stakeholders
sign off on requirements.

Change management is an inherent part of agile processes.

You assess scope and have an opportunity to include new require-
ments with every sprint.

The product owner determines the value and priority of new
requirements and adds or swaps those requirements to the prod-
uct backlog.

The cost of change increases over time,
while the ability to implement changes
decreases.

You fix resources and schedule initially.

New features with high priority don’t necessarily cause budget or
schedule slip; they simply push out the lowest-priority features.

Iterative development allows for changes with each new sprint.

Projects often include scope bloat,
unnecessary product features included
out of fear of mid-project change.

The scrum team determines scope by considering which features
directly support the product vision, the release goal, and the
sprint goal.

The development team creates the most valuable features first to
guarantee their inclusion and to ship those features as soon as
possible.

Less valuable features might never be created, which may be
acceptable to the business and the customer after they have the
highest-value features.

272 PART 4 Agility Management

Traditional project management has a term to describe requirements that change
after the project’s initial definition phase: scope creep. Waterfall doesn’t have a
positive way to incorporate changes mid-project, so scope changes often cause
large problems with a waterfall project’s schedule and budget. (For more on the
waterfall methodology, see Chapter 1.) Mention “scope creep” to a seasoned proj-
ect manager, and you might even see him or her shudder.

During sprint planning at the beginning of each sprint, the scrum team can use
the product backlog priority to help decide whether a new requirement should be
part of the sprint. Lower-priority requirements stay in the product backlog for
future consideration. You can read about planning sprints in Chapter 10.

The next section addresses how to manage scope with agile product development.

Managing Agile Scope
Welcoming scope change helps you create the best product possible. Embracing
change, however, requires that you understand the current scope and know how
to deal with updates as they arise. Luckily, agile approaches have straightforward
ways to manage new and existing requirements:

 » The product owner ensures that the rest of the team — the scrum team plus
the stakeholders — clearly understands the existing product scope in terms
of the product vision, the current release goal, and the current sprint goal.

 » The product owner determines the value and priority of new requirements in
relation to the product vision, release goal, sprint goals, and existing
requirements.

 » The development team creates product requirements in order of priority to
release the most important parts of the product first.

In the following sections, you find out how to understand and convey scope in
different parts of product development. You see how to evaluate priorities as new
requirements arise. You also find out how to use the product backlog and other
agile artifacts to manage scope.

CHAPTER 14 Managing Scope and Procurement 273

Understanding scope throughout
product development
At each stage in development, the scrum team manages scope in different ways.
A good way to look at scope management throughout development is by using the
Roadmap to Value, first presented in Chapter 9 and shown again in Figure 14-1.

Consider each part of the Roadmap to Value:

 » Stage 1, product vision: The product vision statement establishes the outer
boundary of the functionality that the product will include, and is the first step
in establishing scope. The product owner is responsible for ensuring that all
members of the product team know the product vision statement and that
everyone on the team interprets the statement correctly.

 » Stage 2, product roadmap: During product roadmap creation, the product
owner refers to the vision statement and ensures that features support the
vision statement. As new features materialize, the product owner needs to
understand them and be able to clearly communicate to the development
team and stakeholders the scope of these features and how they support the
product vision.

FIGURE 14-1:
The Roadmap to

Value.

274 PART 4 Agility Management

 » Stage 3, release planning: During release planning, the product owner needs
to determine a release goal — the midterm boundary of functionality that is
planned to go to market at the next release — and select only the scope that
supports that release goal.

 » Stage 4, sprint planning: During sprint planning, the product owner needs to
ensure that the scrum team understands the release goal and plans each
sprint goal — the immediate boundary of functionality to be potentially
shippable at the end of the sprint — based on that release goal. The product
owner and development team select only the scope that supports the sprint
goal as part of the sprint. The product owner will also ensure that the
development team understands the scope of the individual user stories
selected for the sprint.

 » Stage 5, daily scrum: In the daily scrum meeting, the scrum team coordi-
nates its focus and progress towards achieving the sprint goal. The meeting
can be a launching point for scope change for future sprints.

When topics come up that warrant a bigger discussion than the time and
format of the daily scrum meeting allows, a scrum team can decide to have an
after-party meeting. In the after-party, scrum team members talk about issues
affecting their progress toward the sprint goal. If opportunities for new
functionality — new scope — are identified during the sprint, the product
owner evaluates them and may add and prioritize them on the product
backlog for a future sprint.

 » Stage 6, sprint review: The product owner sets the tone of each sprint review
meeting by reiterating the scope of the sprint — the sprint goal that the scrum
team pursued and what was completed. Especially during the first sprint
review, it’s important that the stakeholders in the meeting have the right
expectations about scope.

Sprint reviews can be inspiring. When the entire team is in one room,
interacting with the working product, members may look at the product in
new ways and come up with ideas to improve the product. The product owner
updates the product backlog based on feedback received in the sprint review.

 » Stage 7, sprint retrospective: In the sprint retrospective, the scrum team
members can discuss how well they met the scope commitments they made
at the beginning of the sprint. If the development team was not able to
achieve the sprint goal identified during sprint planning, its members will
need to refine planning and work processes to make sure they can select the
right amount of work for each sprint. If the development team met its goals, it
can use the sprint retrospective to come up with ways to add more scope to
future sprints. Scrum teams aim to improve productivity with every sprint.

CHAPTER 14 Managing Scope and Procurement 275

Introducing scope changes
Many people, even people outside the organization, can suggest a new product
feature. You might see new ideas for features from the following:

 » User community feedback, including groups or people who are given an
opportunity to preview the product

 » Business stakeholders who see a new market opportunity or threat

 » Executives and senior managers who have insight into long-term organiza-
tional strategies and changes

 » The development team, which is learning more about the product every day,
and is closest to the working product

 » The scrum master, who may find an opportunity while working with external
departments or clearing development team roadblocks

 » The product owner, who often knows the most about the product and the
stakeholders’ needs

Because you will receive suggestions for product changes throughout product
development, you want to determine which changes are valid and manage the
updates. Read on to see how.

Managing scope changes
When you get new requirements, use the following steps to evaluate and prioritize
the requirements and update the product backlog.

Do not add new requirements to sprints already in progress, unless the develop-
ment team requests them, usually due to unexpected increased capacity.

1. Assess whether the new requirement should be part of the product, the
release, or the sprint by asking some key questions about the
requirement:

(a) Does the new requirement support the product vision statement?

• If yes, add the requirement to the product backlog and product
roadmap.

• If no, the requirement shouldn’t be part of the product. It may be a good
candidate for a separate product.

276 PART 4 Agility Management

(b) If the new requirement supports the product vision, does the new requirement
support the current release goal?

• If yes, the requirement is a candidate for the current release plan.

• If no, leave the requirement on the product backlog for a future release.

(c) If the new requirement supports the release goal, does the new requirement
support the current sprint goal?

• If yes and if the sprint has not started, the requirement is a candidate
for the current sprint backlog.

• If no or the sprint has already started or both, leave the requirement on
the product backlog for a future sprint.

2. Estimate the effort for the new requirement.

The development team estimates the effort. Find out how to estimate
requirements in Chapter 9.

3. Prioritize the requirement against other requirements in the product
backlog and add the new requirement to the product backlog, in order of
priority.

Consider the following:

• The product owner knows the most about the product’s business needs
and how important the new requirement may be in relation to other
requirements. The product owner may also reach out to product stake-
holders for additional insight to a requirement’s priority.

• The development team may also have technical insight about a new
requirement’s priority. For example, if Requirement A and Requirement B
have equal business value, but you need to complete Requirement B for
Requirement A to be feasible, the development team will need to alert the
product owner. Requirement B may need to be completed first.

• Although the development team and product stakeholders can provide
information to help prioritize a requirement, determining priority is
ultimately the product owner’s decision.

• Adding new requirements to the product backlog may mean other
requirements move down the list in the product backlog. Figure 14-2
shows the addition of a new requirement in the product backlog.

The product backlog is a complete list of all known scope for the product and is
your most important tool for managing scope change.

CHAPTER 14 Managing Scope and Procurement 277

Keeping the product backlog up to date will allow you to quickly prioritize and add
new requirements. With a current product backlog, you always understand the
remaining scope. Chapter 9 has more information about prioritizing requirements.

Using agile artifacts for scope management
From the vision statement through the product increment, each agile artifact sup-
ports you in your scope management efforts. Progressively decompose, or break
down, requirements as features rise to the top of the priority list. We talk about
decomposition and progressive elaboration of requirements in Chapter 9.

Table 14-2 reveals how each agile artifact, including the product backlog, contrib-
utes to ongoing scope refinement.

FIGURE 14-2:
Adding a new

requirement to
the product

backlog.

TABLE 14-2 Agile Artifacts and Scope Management Roles
Artifact Role in Establishing Scope Role in Scope Change

Vision statement: A definition
of the product’s end goal.
 Chapter 9 has more about the
vision statement.

Use the vision statement as a
benchmark to judge whether fea-
tures belong in the scope for the
product.

When someone introduces new
requirements, those require-
ments must support the product
vision statement.

Product roadmap: A holistic
view of product features that cre-
ate the product vision. Chapter 9
has more about the product
roadmap.

The product roadmap encom-
passes the scope of the product.
Requirements at a feature level are
good for business conversations
about what it means to realize the
product vision.

Update the product roadmap as
requirements arise or change.
The product roadmap provides
visual communication of the new
feature’s inclusion in the product.

(continued)

278 PART 4 Agility Management

What’s Different about Agile
Procurement?

Another part of agile product development is procurement, managing the purchase
of services or goods needed to deliver the product’s scope. Like scope, procure-
ment is part of the investment side of product development.

Chapter 2 explains that the Agile Manifesto values customer collaboration over con-
tract negotiation. This sets an important tone for procurement relationships.

Valuing customer collaboration more than contract negotiation doesn’t mean that
agile development efforts have no contracts: Contracts and negotiation are critical
to business relationships. However, the Agile Manifesto sets forth the idea that a
buyer and seller should work together to create products, and that the relationship
between the two is more important than quibbling over ill-informed details and
checking off contract items that may or may not ultimately be valuable to
customers.

All 12 Agile Principles apply to procurement. However, the following seem to stand
out the most when securing goods and services for product development:

Artifact Role in Establishing Scope Role in Scope Change

Release plan: A digestible mid-
term target focused around a
minimum set of marketable fea-
tures. Chapter 10 has more
about the release plan.

The release plan shows the scope
of the current release. You may
want to plan your releases by
themes — logical groups of
requirements.

Add new features that belong in
the current release to the release
plan. If the new user story doesn’t
belong in the current release,
leave it on the product backlog
for a future release.

Product backlog: A complete list
of all known scope for the prod-
uct. Chapters 9 and 10 offer
more about the product backlog.

If a requirement is in the scope of
the product vision, it is part of the
product backlog.

The product backlog contains all
scope changes. New, high-priority
features push lower-priority fea-
tures down on the product
backlog.

Sprint backlog: The product
backlog items and tasks in the
scope of the current sprint.
Chapter 10 has more about the
sprint backlog.

The sprint backlog contains the
product backlog items that are in
scope for the current sprint.

The sprint backlog establishes
what is allowed in the sprint.
After the development team com-
mits to the sprint goal in the
sprint-planning meeting, only the
development team can modify
the sprint backlog.

TABLE 14-2 (continued)

CHAPTER 14 Managing Scope and Procurement 279

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

Table 14-3 highlights the differences between procurement on traditional projects
and procurement with agile product development.

TABLE 14-3 Traditional versus Agile Procurement Management
Procurement Management with Traditional
Approaches

Procurement Management with Agile
Approaches

The project manager and the organization are
responsible for procurement activities.

The self-managing development team plays a
larger part in identifying items needing procure-
ment. The scrum master facilitates the acquisition
of needed items for the development team.

Contracts with service providers often include provi-
sions for fixed requirements, extensive documenta-
tion, a comprehensive project plan, and other
traditional deliverables based on a waterfall lifecycle.

Contracts for agile product development are
based on the evaluation of working functionality at
the end of each sprint, not on fixed deliverables
and documentation that may or may not contrib-
ute to delivering quality products.

Contract negotiation between buyers and sellers can
sometimes be challenging. Because negotiation is
often a stressful activity, it can damage the relationship
between the buyer and the seller before work even
starts on a project.

Scrum teams focus on keeping a positive, coopera-
tive relationship between buyers and sellers from
the start of the procurement process.

Switching vendors after a project starts can be costly
and time-consuming because a new vendor must try to
understand the old vendor’s massive amount of work
in progress.

Vendors provide completed, working functionality
at the end of each sprint. If vendors change mid-
sprint, the new vendor can immediately start
developing requirements for the next sprint,
avoiding a long, costly transition.

280 PART 4 Agility Management

Both waterfall and scrum teams are interested in vendor success. Traditional
project approaches were firm in their accountability for compliance, defining suc-
cess as checking off documents and deliverables in a list. Agile approaches, by
contrast, are firm in their accountability for end results, defining success as work-
ing functionality that achieves the customer’s desired outcome.

The next section shows how to manage procurement.

Managing Agile Procurement
This section focuses on how scrum teams go through the procurement process:
from determining need, selecting a vendor, and creating a contract through work-
ing with a vendor and closing out the contract at the end of a buyer-seller product
development effort.

Determining need and selecting a vendor
With agile product development, procurement starts when the development team
decides it needs a tool or the services of a third-party to create the product.

Agile development teams are self-managing and self-organizing, and they get to
make the decisions about what is best for maximizing development output. Self-
management applies to all product management areas, including procurement.
Find out more about self-managing teams in Chapters 7 and 16.

Development teams have a number of opportunities to consider outside goods and
services:

 » Product vision stage: The development team may start thinking about the
tools and skills necessary to help reach the product vision. At this stage, it may
be prudent to research needs but not begin the purchase process.

 » Product roadmap stage: The development team starts to see specific
features to create and may know some of the goods or services necessary to
help create the product.

 » Release planning: The development team knows more about the product
and can identify specific goods or services that will help meet the next release
goal. Start mobilizing the procurement at this time.

 » Sprint planning: The development team is in the trenches of development
and may identify urgent needs for the sprint.

CHAPTER 14 Managing Scope and Procurement 281

 » Daily scrum: Development team members state impediments. Procuring
goods or services may help remove these impediments.

 » Throughout the day: Development team members communicate with one
another and collaborate on tasks. Specific needs may arise from the develop-
ment team’s conversations.

 » Sprint review meeting: Product stakeholders may identify new requirements
for future sprints that warrant procurement of goods or services.

 » Sprint retrospective: The development team may discuss how having a
specific tool or service could have helped the past sprint and suggest a
purchase for future sprints.

After the development team determines it needs a good or service, the develop-
ment team and the scrum master work with the product owner to procure any
necessary funds. The product owner is responsible for managing scope against the
budget, so the product owner is ultimately responsible for any purchases. The
scrum master usually manages the vendor relationship on behalf of the scrum
team after procurement is initiated with the vendor.

When procuring goods, the development team may need to compare tools and
vendors before deciding on a purchase. When procuring goods, after you choose
what to buy and where to get it, the process is usually straightforward: Make the
purchase and take delivery.

Procuring services is usually a longer and more complex process than purchasing
goods. Some agile-specific considerations for selecting a services vendor include
the following:

 » Whether the vendor can work in an agile product development environment
and, if so, how much experience the vendor has with agile techniques

 » Whether the vendor can work on-site with the development team

 » Whether the relationship between the vendor and the scrum team is likely to
be positive and collaborative

The organization or company you work for may be subject to laws and regulations
for choosing vendors. Companies involved in government work, for example, often
need to gather multiple proposals and bids from companies for work that will cost
more than a certain amount of money. Although your cousin or your friend from
college might be the most qualified person to complete the work, you may run into
trouble if you don’t follow applicable laws. Check with your company’s legal depart-
ment if you’re in doubt about how to streamline bloated processes.

282 PART 4 Agility Management

After you choose a service vendor, you need to create a contract so that the vendor
can start work. The next section explains how contracts work with agile product
development.

Understanding cost approaches
and contracts for services
After the development team and the product owner have chosen a vendor, they
need a contract to ensure agreement on the services and pricing. To start the con-
tract process, you should know about different pricing structures and how they
work with agile product development. After you understand these approaches, you
see how to create a contract.

Cost structures
When you’re procuring services for agile product development, it is important to
know the difference between fixed price, fixed time, time and materials, and not to
exceed. Each approach has its own strengths in an agile setting:

 » Fixed price: Starts out with a set budget. With a fixed price, a vendor works on
the product and creates releases until that vendor has spent all the money in the
budget or until you have delivered enough product features, whichever comes first.

For example, if you have a $250,000 budget, and your vendor costs are
$10,000 a week, the vendor’s portion of the development will be able to last
25 weeks. Within those 25 weeks, the vendor creates and releases as much
shippable functionality as possible.

 » Fixed time: Has specific deadlines. For example, you may need to launch a
product in time for the next holiday season, for a specific event, or to coincide
with the release of another product. With a fixed time, you determine costs
based on the cost of the vendor’s team for the duration of development,
along with any additional resource costs, such as hardware or software.

 » Time and materials: Is more open-ended than fixed priced or fixed time.
With time and materials, your work with the vendor lasts until enough product
functionality is complete, without regard to total cost. You know the total cost
at the end of development, after your stakeholders have determined that the
product has enough features to call the product complete.

For example, suppose your development costs $10,000 a week. After 20 weeks,
the stakeholders feel that they have enough valuable product features, so your
total cost is $200,000. If the stakeholders instead deem that they have enough
value by the end of 10 weeks, the cost is half that amount, $100,000.

 » Not to exceed: Is used when time and materials have a fixed-price cap.

CHAPTER 14 Managing Scope and Procurement 283

Regardless of the cost approach, with agile product development concentrate on
completing the highest-value product features first.

Contract creation
After you know the cost approach, the scrum master might help create a contract.
Contracts are legally binding agreements between buyers and sellers that set
expectations about work and payment.

The person responsible for creating contracts differs by organization. In some
cases, a person from the legal or procurement department drafts a contract and
then asks the scrum master to review it. In other cases, the opposite occurs: The
scrum master drafts the contract and has a legal or procurement expert review it.

Regardless of who creates the contract, the scrum master usually acts on behalf of
the scrum team to do any of the following: Initiate the contract creation, negotiate
the contract details, and route the contract through any necessary internal approvals.

The agile approach of placing value on collaboration over negotiation is a key to
maintaining a positive relationship between a buyer and a seller while creating
and negotiating a contract. The scrum master works closely with the vendor and
communicates openly and often with the vendor throughout the contract creation
process.

THE FALLACY OF LOW-BALLING
THE VENDOR
Trying to bully vendors into providing the lowest possible price is always a lose-lose
proposition. Contractors in industries where projects always go to the lowest bidder
have a saying: Bid it low, and watch it grow. It is common for vendors to provide a low
price during a project’s proposal process and then add multiple change orders until the
client ends up paying as much or more than he or she would have for higher-priced
offers.

Waterfall project management supports this practice by locking in scope and price at
the project start, when you know the least about the project. Change orders — and their
accompanying cost increases — are inevitable.

A better model is for the vendor and client to collaborate on defining the scope, within
fixed cost and schedule constraints, as product development unfolds. Both parties can
reap the benefits of what they learn during development, and you end up with a better
product full of the highest-value functionality delivered and identified at the end of each
sprint. Instead of trying to be a tough negotiator, be a good collaborator.

284 PART 4 Agility Management

The Agile Manifesto does not imply that contracts are unnecessary (“customer
collaboration over contract negotiation”). Regardless of the size of your company
or organization, you should create a contract between your company and your
vendor for services. Skipping the contract can leave buyers and sellers open to
confusion about expectations, can result in unfinished work, and can even lead to
legal problems. Contracts should develop through customer collaboration, imply-
ing a non-adversarial approach.

At the very least, most contracts have legal language describing the parties and
the work, the budget, the cost approach, and payment terms. A contract for agile
product development may also include the following:

 » A description of the work that the vendor will complete: The vendor may
have its own product vision statement, which may be a good starting point to
describe the vendor’s work. You may want to refer to the product vision
statement in Chapter 9.

 » Agile approaches that the vendor may use: They may include

• Meetings that the vendor will attend, such as the daily scrum, sprint
planning, sprint review, and sprint retrospective meetings

• Delivery of working functionality at the end of each sprint

• The definition of done (discussed in Chapter 11): Work that is developed,
tested, integrated, and documented, per an agreement between the
product owner, the development team, and the scrum master

• Artifacts that the vendor will provide, such as a sprint backlog with a
burndown chart for visualizing progress

• People whom the vendor will assign to the product, such as the develop-
ment team

• Where the vendor will work, such as on-site at your company

• Whether the vendor will work with a scrum master from the vendor’s
organization or from your organization

• A definition of what may constitute the end of the engagement: The end of
a fixed budget or fixed time, or enough complete, working functionality

 » For a vendor that doesn’t use an agile approach, a description of how the
vendor and the vendor’s work will integrate with the client’s develop-
ment team and sprints

This is not a comprehensive list; contract items vary by product and organization.

CHAPTER 14 Managing Scope and Procurement 285

The contract will likely go through a few rounds of reviews and changes before the
final version is complete. One way to clearly communicate changes and maintain
a good relationship with a vendor is to speak with the vendor each time you pro-
pose a change. If you email a revised contract, follow up with a call to explain what
you changed and why, to answer any questions, and to discuss any ideas for fur-
ther revision. Open discussion helps the contract process to be positive.

If anything substantial about the vendor’s services changes during contract dis-
cussions, it is a good idea for the product owner or the scrum master to review
those changes with the development team. The development team especially
needs to know and provide input about changes to the service the vendor will pro-
vide, the vendor’s approach, and the people on the vendor’s team.

It is quite likely that your company and the vendor will require reviews and
approvals by people outside their respective teams. People who review contracts
might include high-level managers or executives, procurement specialists,
accounting people, and company attorneys. This differs by organization; the
scrum master needs to ensure that anyone who needs to read the contract does so.

Now that you understand a little about how to select a vendor and create a con-
tract, it’s time to look at how to work with a vendor.

Working with a vendor
How you work with a vendor on an agile product development effort depends in
part on the vendor team’s structure. In an ideal situation, vendor teams are fully
integrated with the client’s organization. The vendor’s team members are collo-
cated with the client’s scrum team. Vendor team members work as part of the
client’s development team for as long as necessary.

Just because the vendor is not part of your organization, it doesn’t mean the ven-
dor’s team members are not part of the scrum team. Because you want your ven-
dor integrated as part of your development team, scrum teams include vendor
team members in all scrum events.

Vendor teams also can be integrated but dislocated. If the vendor can’t work
on-site at the client’s company, it can still be part of the client’s scrum team.
Chapter 16 has more information on team dynamics.

If a vendor can’t be collocated, or if the vendor is responsible for a discrete, sepa-
rate part of the product, the vendor may have a separate scrum team. The vendor’s
scrum team works on the same sprint schedule as the client’s scrum team. See
Chapters 15 and 19 to find out how to work with more than one scrum team.

286 PART 4 Agility Management

If a vendor doesn’t use agile product management processes, the vendor’s team
works separately from the client’s scrum team, outside the sprints, and on its own
schedule. The vendor’s traditional project manager helps ensure that the vendor
can deliver its services when the development team needs them. The client’s
scrum master may need to step in if the vendor’s processes or timeline becomes a
roadblock or a disruption for the development team. See the “Managing product
development with dislocated teams” section in Chapter 16 for information about
working with non-scrum teams.

Vendors may provide services for a defined amount of time, or for the life of the
development effort. After the vendor’s work is complete, the contract is closed.

Closing a contract
After a vendor completes work on a contract, the client’s scrum master usually
has some final tasks to close the contract.

If development finishes normally, according to the contract terms, the scrum
master may want to acknowledge the end of the contract in writing. If the contract
stipulates time and materials, the scrum master should definitely end it in writing
to ensure that the vendor doesn’t keep working on lower-priority requirements —
and billing for them.

Depending on the organizational structure and the contract’s cost structure, the
scrum master may be responsible for notifying the client’s company accounting
department after work is complete to ensure that the vendor is paid properly.

If product development finishes before the contract dictates the end (enough
value has been delivered to redeploy capital on a new product development effort),
the scrum master needs to notify the vendor in writing and follow any early ter-
mination instructions from the contract.

End the engagement on a positive note. If the vendor did a good job, the scrum
team may want to acknowledge the people on the vendor’s team at the sprint
reviews. Everyone could potentially work together again, and a simple, sincere
“thank-you” can help maintain a good relationship for future development.

CHAPTER 15 Managing Time and Cost 287

Chapter 15
Managing Time and Cost

Managing time and controlling costs are key aspects of managing agile
product development. In this chapter, you see agile approaches to time
and cost management. You find out how to use a scrum team’s develop-

ment speed to determine time and cost and how to increase development speed to
lower your product’s time and cost.

What’s Different about Agile
Time Management?

With agile product development, time refers to the processes that ensure timely
completion and the effective use of time. To understand agile time management,
it helps to review some of the Agile Principles we discuss in Chapter 2:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

IN THIS CHAPTER

 » Understanding what’s unique about
time management with agile product
development

 » Recognizing how cost management is
different with agile product
development

288 PART 4 Agility Management

Table 15-1 shows some of the differences between time management on tradi-
tional projects and agile product development.

A fixed-schedule or fixed-price approach has a lower risk with agile techniques
because agile development teams always deliver the highest-priority functional-
ity within the time or budget constraints.

A big benefit of agile time management techniques is that scrum teams can deliver
products much earlier than traditional project teams. For example, starting devel-
opment earlier and completing functionality in iterations often allow scrum teams
that work with our company, Platinum Edge, to bring value to the market 30 percent
to 40 percent faster.

The reason agile product development efforts finish sooner isn’t complicated;
they simply start development sooner.

In the next section, find out how to manage time.

TABLE 15-1 Traditional versus Agile Time Management
Time Management with Traditional
Approaches Time Management with Agile Approaches

Fixed scope directly drives the schedule. Scope is not fixed. Time can be fixed, and development
teams can create the requirements that will fit into a spe-
cific time frame.

Project managers determine time based on the
requirements gathered at the beginning of the
project.

During development, scrum teams assess and reassess
how much work they can complete in a given time frame.

Teams work at one time in phases on all project
requirements, such as requirements gathering,
design, development, testing, and deployment.
No schedule difference exists between critical
requirements and optional requirements.

Scrum teams work in sprints and complete all the work
on the highest-priority, highest-value requirements first.

Teams do not start actual product development
until later in the project, after the requirements-
gathering and design phases are complete.

Scrum teams start product development in the first
sprint.

Time is more variable on traditional projects. Timeboxed sprints stay stable, enabling predictability.

Project managers try to predict schedules at the
project start, when they know little about the
product.

Scrum teams determine long-range schedules on actual
development performance in sprints. Scrum teams adjust
time estimates throughout development as they learn
more about the product and the development team’s
speed, or velocity. You learn more about velocity later in
this chapter.

CHAPTER 15 Managing Time and Cost 289

Managing Agile Schedules
Agile practices support both strategic and tactical schedules and time
management:

 » Your early planning is strategic in nature. The high-level requirements in the
product roadmap and the product backlog can help you get an early idea of
the overall schedule. Find out how to create a product roadmap and product
backlog in Chapter 9.

 » Your detailed planning for each release and at each sprint is tactical. Read
more about release planning and sprint planning in Chapter 10.

• At release planning, you can plan your release to match a specific date,
with minimal marketable features.

• You also can plan your release with enough time to create a specific set of
features.

• During each sprint planning meeting, in addition to selecting the scope for
the sprint, the development team estimates the time, in hours, to complete
individual tasks for each of that sprint’s requirements. Use the sprint
backlog to manage detailed time allocations throughout the sprint.

 » After development is underway, use the scrum team’s velocity (development
speed) to fine-tune your scheduling. We discuss velocity in the next section.

In Chapter 10, we describe planning releases for minimal marketable features, the
smallest group of product functionality providing enough value that you can
effectively deploy and promote in the marketplace.

To determine how much functionality an agile development team can deliver
within a set amount of time, you need to know your development team’s velocity.
In the next section, you take a look at how to calculate velocity, how to use velocity
as a planning input, and ways you might increase velocity throughout product
development.

Introducing velocity
One of the most important considerations about time management with agile
product development is the use of velocity, a powerful empirical data set that
scrum teams use to forecast long-term timelines. Velocity, in agile terms, is a
development team’s work speed. In Chapter 9, we describe estimation of effort for
implementing requirements, or user stories, in story points. You measure velocity
by the number of user story points that the development team completes, meeting
its definition of done, in each sprint.

290 PART 4 Agility Management

A user story is a simple description of a product requirement, identifying what a
requirement must accomplish, and for whom. User story points are relative num-
bers that describe the amount of effort necessary to develop and implement a user
story. Chapter 10 delves into the details of defining user stories and estimating the
effort using story points.

When you know the development team’s velocity, you can use it as a long-range
planning tool. Velocity can help you forecast how long the scrum team will take to
complete a certain number of requirements and how much development may cost.

In the next section, you dive into velocity as a tool for time management. You see
how scope changes affect a timeline. You also find out how to work with multiple
scrum teams and review agile artifacts for time management.

DETERMINING PRODUCT DEVELOPMENT
DURATION
A few factors determine how long agile product development should take:

• Assigned deadline: For business reasons, scrum teams may want to set a specific
end date. For example, you may want to get a product to market for a specific
shopping season or to coincide with the timing of a competitor’s product release. In
that case, you set a specific end date, and create as much shippable functionality as
possible from the start until the end date.

• Budget considerations: Scrum teams may also have budget considerations that
affect the amount of time product development will last. For example, if you have a
$1,600,000 budget, and your team costs $20,000 a week to run, your development
effort will last 80 weeks. You’ll have 80 weeks to create and release as much shippa-
ble functionality as possible. A fixed date can set a limit for your investment
decision.

• Functionality completed: Agile product development may also last only until
enough functionality is complete to achieve some specified amount of value deliv-
ered. Scrum teams may run sprints until the requirements with the highest value
are complete, and then determine that the lower-value requirements — the ones
that few people will use or that will not generate much revenue — aren’t necessary.

CHAPTER 15 Managing Time and Cost 291

Monitoring and adjusting velocity
After development starts, the scrum team starts to monitor its velocity at the end
of each sprint. You use velocity for long-term schedule and budget planning as
well as for sprint planning.

In general, people are good at planning and estimating in the short term, so iden-
tifying hours for tasks in an upcoming sprint works well. At the same time, people
are often terrible at estimating distant tasks in absolute terms such as hours.
Tools such as relative estimating and velocity, which are based on actual perfor-
mance, are more accurate measurements for longer-term planning.

Velocity is a good trending tool. You can use it to determine future timelines
because the activities and development time within sprints is the same from
sprint to sprint.

Velocity is a post-sprint fact, not a goal. Avoid attempting to guess or commit to
a certain velocity before development starts or in the middle of a sprint. You’ll
only set unrealistic expectations about how much work the team can complete. If
velocity turns into a target rather than a past measurement, scrum teams may be
tempted to exaggerate estimated story points to meet that target, rendering esti-
mates and velocity meaningless. Instead, use the scrum team’s actual velocity to
forecast how much longer the development may take and cost. Also focus on
increasing velocity by removing constraints identified during the sprint and at the
sprint retrospective. Agile product development is pulled, not pushed.

In the next section, you see how to calculate velocity, how to use velocity to pre-
dict a schedule, and how to increase your scrum team’s velocity.

Calculating velocity
At the end of each sprint, the scrum team looks at the requirements it has finished
and adds up the number of story points associated with those requirements. The
total number of completed story points is the scrum team’s velocity for that
sprint. After the first few sprints, you will start to see a trend and will be able to
calculate the average velocity.

Because velocity is a number, managers and executives may be tempted to use
velocity as a performance metric for compensating and comparing teams. Velocity
is not a performance metric, is team-specific, and should not be used outside the
scrum team. It is no more than a planning tool scrum teams can use to forecast
remaining work. Principle 7 reminds us that “working software (or working prod-
uct) is the primary measure of progress.” Not velocity.

292 PART 4 Agility Management

The average velocity is the total number of story points completed, divided by the
total number of sprints completed. For example, if the development team’s veloc-
ity was

Sprint 1 = 15 points

Sprint 2 = 13 points

Sprint 3 = 16 points

Sprint 4 = 20 points

your total number of story points completed will be 64. Your average velocity will
be 16: 64 story points divided by 4 sprints.

You don’t have to run many sprints before you have real data to forecast. In fact,
after you’ve run only one sprint, you’ll have your first empirical data point of the
scrum team’s velocity. Of course, after you run more sprints, you’ll have more
empirical data points to use to fine-tune your forecast — based on reality rather
than theory.

Using velocity to estimate the
development timeline
When you know your velocity, you can determine how long product development
will last. Follow these steps:

1. Add up the number of story points for the remaining requirements in the
product backlog.

2. Determine the number of sprints you’ll need by dividing the number of
story points remaining in the product backlog by the velocity:

• To get a pessimistic estimate, use the lowest velocity the development
team has accomplished.

• To get an optimistic estimate, use the highest velocity the development
team has accomplished.

• To get a most likely estimate, use the average velocity the development
team has accomplished.

Using this empirical data — actual output speed — a product owner can give
stakeholders a range of release outcomes, and they can work together to
make business prioritization decisions early. These decisions might include
whether there is a need to spin up an additional scrum team to develop more
scope items, adjust market release dates, or request additional budget. Even
better, the product owner may realize early which features to abandon.

CHAPTER 15 Managing Time and Cost 293

3. Determine how much time it will take to complete the story points in the
product backlog by multiplying sprint length by the number of remaining
sprints.

For example, assume that

• Your remaining product backlog contains 400 story points.

• Your development team velocity averages 20 story points per sprint.

How many more sprints will your product backlog need? Divide the number of
story points by your velocity, and you get your remaining sprints. In this case,
400/20 = 20.

If you’re using two-week sprints, your product development will last 40 weeks.

After the scrum team knows its velocity and the number of story points for the
requirements, you can use the velocity to determine how long any given group of
requirements will take to create. For example:

 » You can calculate the time an individual release may take if you have an idea
of the number of story points that will go into that release. At the release level,
your story point estimates will be more high level than at the sprint level. If
you’re basing your release timing on delivering specific functionality, your
release date may change as you refine your user stories and estimates
throughout product development.

 » You can calculate the time you need for a specific group of user stories —
such as all high-priority stories or all stories relating to a particular theme —
by using the number of story points in that group of user stories.

Another approach to long-range planning is the #noestimates movement, which
advocates decomposing product backlog items into equally sized items, rather
than estimating items of different story point sizes. Velocity in this case refers to
how many product backlog items can be accomplished each sprint. Taking the
total number of product backlog items in the product backlog and dividing it by
the number of product backlog items the team can complete in a sprint (velocity)
results in a schedule of how many sprints it will take to complete the product.

Velocity differs from sprint to sprint. In the first few sprints, when the product is
new, the scrum team will typically have a low velocity. As product development
progresses, velocity should increase because the scrum team will have learned
more about the product and will have matured as a team working together. Set-
backs within specific sprints can temporarily decrease velocity from time to time,
but agile processes such as the sprint retrospective can help the scrum team
ensure that those setbacks are temporary.

294 PART 4 Agility Management

With new teams, velocity will vary considerably from sprint to sprint. Velocity will
become more consistent over time, as long as the scrum team members remain
consistent. In Chapter 8, we discuss the value of creating long-lived and even
permanent scrum teams.

Scrum teams can also increase their velocity, making product development shorter
and less costly. In the next section, you find ways to increase velocity in each
 consecutive sprint.

Increasing velocity
If a scrum team has a product backlog with 400 story points and an average veloc-
ity of 20 story points, product development will last 20 sprints — 40 weeks, with
2-week sprints. But what if the scrum team could increase its velocity?

 » Increasing the average velocity to 23 story points per sprint would mean
17.39 sprints. If you round that up to 18 sprints, the same product develop-
ment effort would last 36 weeks.

 » An average velocity of 26 would take about 15.38, rounded up to 16 sprints, or
32 weeks.

 » An average velocity of 31 would take about 12.9, rounded up to 13 sprints, or
26 weeks.

As you can see, even marginally increasing velocity can save a good deal of time
and, consequently, money.

Velocity can naturally increase with each sprint, as the scrum team finds its
rhythm of working together. However, opportunities exist to also raise velocity,
past the common increases that come with time. Everyone on a scrum team plays
a part in helping get higher velocity with every successive sprint:

 » Remove roadblocks. One way to increase velocity is to quickly remove
roadblocks, or impediments. Roadblocks are anything that keeps a develop-
ment team member from working to full capacity. By definition, roadblocks
can decrease velocity. Clearing roadblocks as soon as they arise increases
velocity by helping the scrum team to be fully functional and productive. Find
out more about removing impediments in Chapter 11.

 » Avoid roadblocks. The best way to increase velocity is to strategically create
ways to avoid or prevent roadblocks in the first place. By knowing — or
learning about — the processes and the specific needs of groups your team
will work with, you can head off roadblocks before they arise.

CHAPTER 15 Managing Time and Cost 295

 » Eliminate distractions. Another way to increase velocity is for the scrum
master to protect the development team from distractions. By making sure
people don’t request work outside the sprint goal from the development
team — even tasks that might take a small amount of time — the scrum
master will be able to help keep the development team focused on the sprint.

Having a dedicated scrum master who continually helps prevent and remove
constraints for the scrum team will result in continually increasing velocity.
The value of a dedicated scrum master is quantifiable.

 » Solicit input from the team. Finally, everyone on the scrum team can
provide ideas for increasing velocity in the sprint retrospective meeting. The
development team knows its work the best, and may have ideas on how to
improve output. The product owner may have insights into the requirements
that can help the development team work faster. The scrum master will have
seen any repetitive roadblocks and can discuss how to prevent the roadblocks
in the first place.

Increasing velocity is valuable, but remember that you may not see changes over-
night. Scrum team velocity often has a pattern of slow increases, some big velocity
jumps, a flat period, and then slow increases again as the scrum team identifies,
experiments, and corrects constraints that are holding it back. As discussed in
Chapter 4, they use the scientific method to consistently improve their team.

PREVENTING ROADBLOCKS
One development team we worked with needed feedback from its company’s legal
department but had not been able to get a response via email or voicemail. In a daily
scrum meeting, one of the development team members stated this lack of response as
a roadblock. After the scrum meeting was over, the scrum master walked over to the
legal department and found the right person to work with. After talking to that person,
the scrum master found out that her email was constantly flooded with requests, and
her voicemail was not much better.

The scrum master then suggested a process for future legal requests: Moving forward,
the development team members could walk over to the legal department with requests
and get feedback right there, in person, immediately. The new process took only a few
minutes, but saved days on turnaround from the legal department, effectively prevent-
ing similar roadblocks in the future. Finding ways to prevent roadblocks helps increase
the scrum team’s velocity.

296 PART 4 Agility Management

Consistency for useful velocity
Because velocity is a measure of work completed in terms of story points, it’s an
accurate indicator and predictor of performance only when you use the following
practices:

 » Consistent sprint lengths: Each sprint should last the same amount of time
throughout the life of product development. If sprint lengths are different, the
amount of work the development team can complete in each sprint will be
different, and velocity won’t be relevant in predicting the remaining time.

 » Consistent work hours: Individual development team members should work
the same number of hours in each sprint. If Sandy works 45 hours in one sprint,
23 in another, and 68 in yet another, she will naturally complete a different
amount of work from sprint to sprint. However, if Sandy always works the same
number hours in one sprint, her velocity will be comparable between sprints.

 » Consistent development team members: Different people work at different
rates. Tom might work faster than Bob, so if Tom works on one sprint and
Bob works on the next sprint, the velocity of Tom’s sprint will not be a good
prediction for Bob’s sprint.

When sprint lengths, work hours, and team members remain consistent through-
out development, you can use velocity to truly know whether development speed
is increasing or decreasing and to accurately estimate the timeline. For this rea-
son, scrum teams adhere to Principle 8: “Agile processes promote sustainable
development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.”

Performance does not scale linearly with available time. For example, if you have
two-week sprints with 20 story points per sprint, going to three-week sprints
does not guarantee 30 story points. The new sprint length will generate an
unknown change in velocity.

Although changing sprint lengths does introduce variance into a scrum team’s
velocity and projections, we rarely discourage scrum teams from decreasing their
sprint lengths (from three weeks to two, or from two weeks to one) because
shorter feedback loops allow scrum teams to react faster to customer feedback,
enabling them to deliver more value to their customer. However, changing sprint
lengths always comes with the same caution: Velocity does not scale linearly in
the opposite direction either, and scrum teams will have to establish a new veloc-
ity for their shorter sprint before their projections will become reliable again.

Shorter is better. If you go from a two-week sprint to a three-week sprint, you
have to wait three weeks before you have your first empirical data point. In that
same three-week period, going from a two-week sprint to a one-week sprint will
give you three new empirical data points.

CHAPTER 15 Managing Time and Cost 297

When you know how to accurately measure and increase velocity, you have a pow-
erful tool for managing time and cost. In the next section, we talk about how to
manage a timeline in an ever-changing agile environment.

Managing scope changes from
a time perspective
Scrum teams welcome changing requirements at any time throughout develop-
ment, which means scope reflects the real priorities of the business. It is “require-
ments Darwinism” at its purest — development teams complete requirements of
highest priority first. Fixed sprint lengths force out requirements that sound like
good ideas in theory but never win the “either this requirement or that require-
ment” contest.

New requirements may have no effect on a timeline; you just have to prioritize.
Working with the stakeholders, the product owner can determine to develop only
the requirements that will fit in a certain window of time or budget. The priority
ranking of items in the product backlog determines which requirements are
important enough to develop. The scrum team can guarantee completing higher-
priority requirements. The lower-priority requirements might be part of another
product or may never be created.

In Chapter 14, we discuss how to manage scope changes with the product backlog.
When you add a new requirement, you prioritize that requirement against all
other items in your product backlog and add the new item into the appropriate
spot in the product backlog. This may move other product backlog items down in
priority. If you keep your product backlog and its estimates up-to-date as new
requirements arise, you’ll always have a good idea of the timeline, even with con-
stantly changing scope.

On the other hand, the product owner and the stakeholders may determine that all
the requirements in the product backlog, including new requirements, are useful
enough to include in the product. In this case, you extend the development end
date to accommodate the additional scope, increase velocity, or divide the scope
among multiple scrum teams that will work simultaneously on different product
features. Learn more about multi-team product development in Chapter 19.

Scrum teams often make schedule decisions about lower-priority requirements
toward the end of development. The reasons for these just-in-time decisions are
because marketplace demands for specific scope items change, and also because
velocity tends to increase as the development team gets into a rhythm. Changes in
velocity increase your predictions about how many product backlog items the
development team can complete in a given amount of time. With agile product

298 PART 4 Agility Management

development, you wait until the last responsible moment — when you know the
most about the question at hand — to make decisions you’ll be committed to for
the rest of your work.

The next section shows you how to work with more than one scrum team on a
common goal.

Managing time by using multiple teams
For larger development efforts, multiple scrum teams working in parallel may be
able to complete development in a shorter time frame.

You may want to use multiple scrum teams if

 » Your development effort is very large and will require more than a single
development team of nine or fewer development team members
to complete.

 » Your development effort has a specific end date that you must meet, and the
scrum team’s velocity will not be sufficient to complete the most valuable
requirements by that end date.

The ideal size for a development team is no less than three and no more than
nine people. Groups of more than nine people start to build silos, and the number
of communication channels makes self-management more difficult. (In some
cases, we’ve seen these issues in teams smaller than nine.) When your product
development requires more development team members than can effectively
communicate, it may be time to consider using multiple scrum teams.

In Chapter 19, we show you several techniques for scaling product development
work across multiple teams.

Using agile artifacts for time management
The product roadmap, product backlog, release plan, and sprint backlog all play a
part in time management. Table 15-2 shows how each artifact contributes to time
management.

In the next sections, you dive into cost management for agile product develop-
ment. Cost management is directly related to time management. You compare
traditional approaches to cost management to those with agile product develop-
ment. You find out how to estimate costs and how to use velocity to forecast your
long-term budget.

CHAPTER 15 Managing Time and Cost 299

What’s Different about Agile
Cost Management?

Cost is a product’s financial budget. When you work with an agile product devel-
opment approach, you focus on value, exploit the power of change, and aim for
simplicity. Agile Principles 1, 2, and 10 state the following:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

Because of this emphasis on value, change, and simplicity, agile product develop-
ment takes a different approach to budget and cost management than traditional
projects. Table 15-3 highlights some of the differences.

When costs increase, sponsors sometimes find themselves in a kind of hostage
situation. A waterfall approach does not call for any complete product functional-
ity until the end of a project. Because traditional approaches to development are
all-or-nothing proposals, if costs increase and stakeholders don’t pay more for

TABLE 15-2 Agile Artifacts and Time Management
Artifact Role in Time Management

Product roadmap: The product roadmap
is a prioritized, holistic view of the high-
level requirements that support the prod-
uct’s vision. Find more about the product
roadmap in Chapter 9.

The product roadmap is a strategic look at the overall product
priorities. Although the product roadmap likely will not have
specific dates, it will have general date ranges for groups of
functionality and will allow an initial framing for bringing the
product to market.

Product backlog: The product backlog is a
complete list of all currently known prod-
uct requirements. Find more about the
product backlog in Chapters 9 and 10.

The requirements in your product backlog will have estimated
story points. After you know your development team’s velocity,
you can use the total number of story points in the product
backlog to determine a realistic end date.

Release plan: The release plan contains a
release schedule for a minimum set of
requirements. Find more about the release
plan in Chapter 10.

The release plan will have a target release date for a specific
goal supported by a minimal set of marketable features.
Scrum teams plan and work on only one release at a time.

Sprint backlog: The sprint backlog con-
tains the requirements and tasks for the
current sprint. Find more about the sprint
backlog in Chapter 10.

During your sprint planning meeting, you estimate individual
tasks in the backlog in hours. At the end of each sprint, you
take the total completed story points from the sprint backlog
to calculate your development team’s velocity for that sprint.

300 PART 4 Agility Management

the product, they will not get any finished requirements. The incomplete product
becomes a kidnapped hostage; pay more, or get nothing.

In the following sections, you find out about cost approaches to agile product
development, how to estimate costs, how to control your budget, and how to
lower costs.

Managing Agile Budgets
With agile product development, cost is mostly a direct expression of time. Because
scrum teams consist of full-time, dedicated team members, they have a set team
cost — generally expressed as an hourly or fixed rate per person — that should be
the same for each sprint. Consistent sprint lengths, work hours, and team mem-
bers enable you to accurately use velocity to predict development speed. Once you
use velocity to determine remaining sprints — that is, how long your product
development effort will be — you can know how much your product development
effort will cost.

TABLE 15-3 Traditional versus Agile Cost Management
Cost Management with Traditional
Approaches Cost Management with Agile Approaches

Cost, like time, is based on fixed scope. Schedule, not scope, has the biggest effect on cost. You
can start with a fixed cost and a fixed amount of time, and
then complete requirements as potentially shippable
functionality that fit into your budget and schedule.

Organizations estimate project costs and fund
projects before the project starts.

Product owners often secure funding after the product
roadmap stage is complete. Some organizations even
fund one release at a time; product owners will secure
funding after completing release planning for each
release.

New requirements mean higher costs. Because
project managers estimate costs based on what
they know at the project start, which is very lit-
tle, cost overruns are common.

Scrum teams can replace lower-priority requirements
with new, equivalently sized high-priority requirements
with no effect on time or cost.

Scope bloat (see Chapter 12) wastes large
amounts of money on features that people
simply do not use.

Because agile development teams complete requirements
by priority, they concentrate on creating only the product
features that users need, whether those features are
added on day 1 or day 100 of development.

Projects cannot generate revenue until the
project is complete.

Scrum teams can release working, revenue-generating
functionality early, creating a self-funding product.

CHAPTER 15 Managing Time and Cost 301

Cost also includes the cost for resources like hardware, software, licenses, and any
other supplies you might need to complete development.

In this section, you find out how to create an initial budget and how to use the
scrum team’s velocity to determine long-range costs.

Creating an initial budget
To create the budget for your product, you need to know the cost for your scrum
team, per sprint, and the cost for any additional resources you need to complete
development.

Typically, you calculate the cost for your scrum team by using an hourly rate for
each team member. Multiply each team member’s hourly rate by his or her
 available hours per week by the number of weeks in your sprints to calculate your
scrum team’s per-sprint cost. Table 15-4 shows a sample budget for a scrum
team — the product owner, five development team members, and the scrum
 master — for a two-week sprint.

The cost for additional resources will vary. In addition to scrum team member
costs, take the following into account when determining your costs:

 » Hardware costs

 » Software, including license costs

TABLE 15-4 Sample Scrum Team Budget for a Two-Week Sprint
Team Member Hourly Rate Weekly Hours Weekly Cost Sprint Cost (2 Weeks)

Don $80 40 $3,200 $6,400

Peggy $70 40 $2,800 $5,600

Bob $70 40 $2,800 $5,600

Mike $65 40 $2,600 $5,200

Joan $85 40 $3,400 $6,800

Tommy $75 40 $3,000 $6,000

Pete $55 40 $2,200 $4,400

Total 280 $20,000 $40,000

302 PART 4 Agility Management

 » Hosting costs

 » Training costs

 » Miscellaneous team expenses, such as additional office supplies, team
lunches, travel costs, and the price of any tools you may need

These costs may be one-time costs, rather than per-sprint costs. We suggest sep-
arating these costs in your budget; as you see in the next section, you need your
cost for each sprint to determine the cost for development. (To keep calculations
simple throughout this chapter, we assume that the per-sprint cost is $40,000,
which includes scrum team member costs as well as any additional resources,
such as those just listed.)

Resources typically refer to inanimate objects, not people. Resources need to be
managed. When discussing resources, refer to people as team members, talent, or
just people. This issue may seem minor, but the more you focus on individuals and
interactions over processes and tools, even in the details, the more your mindset
will change to think and be more agile.

Creating a self-funding product
A big benefit of agile product development is the capability to become self-
funding. Scrum teams deliver working functionality at the end of each sprint and
make that functionality available to the marketplace at the end of each release
cycle. If your product is an income-generating product, you could use revenue
from early releases to help fund the rest of product development.

For example, an ecommerce website that holds all completed work for one big
release after six months instead of releasing functionality incrementally may be
able to generate $100,000 per month. However, the same ecommerce website
might be able to start generating $15,000 a month in sales after the first release
of some essential valuable functionality, $40,000 a month after the second incre-
mental release of valuable functionality, and so on. Tables 15-5 and 15-6 compare
income on a sample traditional project to the income from a self-funding agile
product development effort.

In Table 15-5, the project created $100,000 in income after six months of devel-
opment. Now compare the income in Table 15-5 to the income generated in
Table 15-6.

In Table 15-6, the product generated income with the first release. By the end of
six months, the product had generated $330,000 — $230,000 more than the proj-
ect in Table 15-5.

CHAPTER 15 Managing Time and Cost 303

Using velocity to determine
long-range costs
The “Using velocity to estimate the development timeline” section, earlier in this
chapter, shows you how to determine how much time product development will
take, using the scrum team’s velocity and the remaining story points in the prod-
uct backlog. You can use the same information to determine the cost of developing
the entire product or just the current release.

After you know the scrum team’s velocity, you can calculate the cost for the
remainder of product development.

TABLE 15-5 Income from a Traditional Project with a Final
Release after Six Months

Month Income Generated Total Project Income

January $0 $0

February $0 $0

March $0 $0

April $0 $0

May $0 $0

June $0 $0

July $100,000 $100,000

TABLE 15-6 Income with Monthly Releases and a Final Release after
Six Months

Month/Release Income Generated Total Income

January $0 $0

February $15,000 $15,000

March $25,000 $40,000

April $40,000 $80,000

May $70,000 $150,000

June $80,000 $230,000

July $100,000 $330,000

304 PART 4 Agility Management

In the velocity example from earlier in this chapter, where your scrum team veloc-
ity averages 16 story points per sprint, your product backlog contains 400 story
points, and your sprints are 2 weeks long, your product will take 25 sprints, or
50 weeks, to complete.

To determine the remaining cost of product development, multiply the cost per
sprint by the number of sprints the scrum team needs to complete the product
backlog.

If your scrum team cost is $40,000 per sprint and you have 25 sprints left, your
remaining cost for development will be $1,000,000.

In the next sections, you find out different ways to lower your costs.

Lowering cost by increasing velocity
In the time management section of this chapter, we talk about increasing the
scrum team’s velocity. Using the examples from the earlier section, and the
$40,000 per two-week sprint from Table 15-4, increasing velocity could reduce
your costs, as follows:

 » If the scrum team increases its average velocity from 16 to 20 story points
per sprint

• You will have 20 remaining sprints.

• Your remaining development will cost $800,000, saving you $200,000.

 » If the scrum team increases its velocity to 23 story points

• You will have 18 remaining sprints.

• Your remaining development will cost $720,000, saving you an additional
$80,000.

 » If the scrum team increases its velocity to 26 story points

• You will have 16 remaining sprints.

• Your remaining development will cost $640,000, an additional $80,000
savings.

As you can see, increasing the scrum team’s velocity by removing impediments
can provide real savings. See how to help the scrum team become more productive
in the “Increasing velocity” section, earlier in this chapter.

CHAPTER 15 Managing Time and Cost 305

Lowering cost by reducing time
You can also lower your costs by not completing lower-priority requirements,
thus lowering the number of sprints you need. Because completed functionality is
delivered with each sprint with agile product development, the stakeholders can
make a business decision to end development when the cost of future develop-
ment is higher than the value of that future development.

Stakeholders can then use the remaining budget from the canceled development
effort to develop something even more valuable. The practice of moving the bud-
get from one development effort to another is called capital redeployment.

To determine when development should end based on cost, you need to know

 » The business value (V) of the remaining requirements in the product backlog

 » The actual cost (AC) of the work it will take to complete the requirements in
the product backlog

 » The opportunity cost (OC), or the value of having the scrum team work on
something new

When V < AC + OC, product development can stop because the cost you’ll sink into
the remaining product requirements will be more than the value you will receive
from them.

For example, consider the following about a company using agile product devel-
opment techniques:

 » The remaining features in the product backlog will generate $100,000 in
income (V = $100,000).

 » It will take three sprints with a cost of $40,000 per sprint to create those
features, a total of $120,000 (AC = $120,000).

 » The scrum team could be working on a new product initiative that would
generate $150,000 after three sprints, minus the scrum team’s cost
(OC = $150,000).

 » The product value, $100,000, is less than the actual costs plus opportunity
costs, or $270,000. This would be a good time to stop and redeploy capital to
the next product initiative.

The opportunity for capital redeployment sometimes arises in emergencies, when
an organization needs the scrum team to pause or pivot to something more valu-
able or both. Sponsors sometimes evaluate the remaining value and cost before
restarting new product development.

306 PART 4 Agility Management

Pausing and pivoting can be expensive. The costs associated with demobilization
and remobilization — saving work in progress, documenting current state,
debriefing paused team members, retooling for the new development, briefing
team members on the new development, learning new skills required on the new
development — can be significant and should be evaluated before making the
decision to pause development that may need to be remobilized again in the
future. V < AC + OC can help with this decision.

Sponsors may also compare the product backlog value to remaining development
costs throughout product development, so they know just the right time to end
development and receive the most value.

Determining other costs
Similar to time management, after you know the scrum team’s velocity, you can
determine the cost of development. For example:

 » You can calculate the cost for an individual release if you have an idea of the
number of story points that will go into that release. Divide the number of
story points in the release by the scrum team’s velocity to determine how
many sprints will be required. At the release, your story point estimates will be
more high-level than at the sprint, so your costs may change, depending on
how you determine your release date.

 » You can calculate the cost for a specific group of user stories, such as all
high-priority stories or all stories relating to a particular theme, by using the
number of story points in that group of user stories.

Using agile artifacts for cost management
You can use the product roadmap, release plan, and sprint backlog for cost man-
agement. Refer to Table 15-2 to see how each artifact helps you measure and eval-
uate development time and costs.

Time and cost forecasts based on the team’s empirically proven development pace
are more accurate than forecasts based on hypotheticals or what the team hopes
to accomplish.

CHAPTER 16 Managing Team Dynamics and Communication 307

Chapter 16
Managing Team
Dynamics and
Communication

Team dynamics and communication are significant parts of agile product
development. In this chapter, you find out about traditional and agile
approaches to teams and communication. You see how a high value on indi-

viduals and interactions makes agile teams great teams to work on. You also find
out how face-to-face communication helps make agile product development
successful.

What’s Different about Agile
Team Dynamics?

What makes an agile team unique? The core reason agile teams are different from
traditional teams is their team dynamics. The Agile Manifesto (refer to Chapter 2)
sets the framework for how agile team members work together: The very first
item of value in the manifesto is individuals and interactions over processes and
tools.

IN THIS CHAPTER

 » Recognizing how agile principles
change team dynamics

 » Understanding how communication
differs with agile product
development

 » Seeing how communication works

308 PART 4 Agility Management

The following agile principles, also from Chapter 2, support valuing people on the
team and how they work together:

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The agile principles apply to many different product management areas. You see
some of these principles repeated in different chapters of this book.

With agile product development, the development team contains the people who
do the physical work of creating the product. The scrum team contains the devel-
opment team, plus the product owner and the scrum master. The product team is
the scrum team and your stakeholders. Everyone on the scrum team has respon-
sibilities related to self-management.

Table 16-1 shows some differences between team management with traditional
projects and agile product development.

We avoid the term resources when referring people. Referring to people and equip-
ment with the same term is the beginning of thinking of team members as inter-
changeable objects that can be swapped in and out. Resources are things, utilitarian
and expendable. The people on your team are human beings, with emotions, ideas,
and priorities inside and outside. People can learn and create and grow throughout
their experience of working together. Respecting your fellow team members by
referring to them as people instead of resources is a subtle but powerful way to
reinforce the fact that people are at the core of an agile mindset.

The following sections discuss how working with a dedicated, cross-functional,
self-organizing, size-limited team benefits agile product development. You find
out more about servant leadership and creating a good environment for a scrum
team. In short, you find out how team dynamics help agile product development
succeed.

CHAPTER 16 Managing Team Dynamics and Communication 309

Managing Team Dynamics
Time and again, when we talk with product owners, developers, and scrum mas-
ters, we hear the same thing: People enjoy agile product development. Scrum
team dynamics enable people to do great work in the best way they know how.
People on scrum teams have opportunities to learn, to teach, to lead, and to be
part of a cohesive, self-managing team.

The following sections show you how to work as part of an agile team (using
scrum as the context) and why agile approaches to teamwork make agile develop-
ment successful.

TABLE 16-1 Traditional versus Agile Team Dynamics
Team Management with Traditional
Approaches Team Dynamics with Agile Approaches

Project teams rely on command and control — a
top-down approach to project management, where
the project manager is responsible for assigning
tasks to team members and attempting to control
what the team does.

Agile teams are self-managing, self-organizing, and
benefit from servant leadership. Instead of top-down
management, a servant-leader coaches, removes
obstacles, and prevents distractions to enable the
team to thrive.

Companies evaluate individual employee
performance.

Agile organizations evaluate team performance. Agile
teams, like any sports team, succeed or fail as a whole
team. Whole-team performance encourages individ-
ual team members to increase the ways they can
 contribute to the team’s success.

Team members often find themselves working on
more than one project at a time, switching their
attention back and forth.

Development teams are dedicated to one goal at a
time, and reap the benefits of focus.

Development team members have distinct roles,
such as programmer or tester.

Agile organizations focus on skills instead of titles.
Development teams work cross-functionally, doing
different jobs within the team to ensure that they
complete priority requirements quickly.

Development teams have no specific size limits. Development teams are intentionally limited in size.
Ideally, development teams have no fewer than three
and no more than nine people.

Team members are commonly referred to as
resources, a shortened term for human resources.

Team members are called people, talent, or simply
team members. With agile product development, you
probably will not hear the term resource used to refer
to people.

310 PART 4 Agility Management

Becoming self-managing
and self-organizing
With agile product development, scrum teams are directly accountable for
creating deliverables. Scrum teams manage themselves, organizing their own
work and tasks. No one person tells the scrum team what to do. This doesn’t mean
that agile development efforts have no leadership. Each member of the scrum
team has the opportunity to lead informally, based on his or her skills, ideas, and
initiative.

The idea of self-management and self-organization is a mature way of thinking
about work. Self-management assumes that people are professional, motivated,
and dedicated enough to commit to a job and see it through. At the core of self-
management is the idea that the people who are doing a job from day to day know
the most about that job and are best qualified to determine how to complete it.
Working with a self-managing scrum team requires trust and respect within the
team and within the team’s organization as a whole.

Nonetheless, let’s be clear: Accountability is at the core of agile product develop-
ment. The difference is that agile teams are held accountable for tangible results
that you can see and demonstrate. Traditionally, companies held teams account-
able for compliance to the organization’s step-by-step process — stripping them
of the ability or incentive to be innovative. Self-management, however, returns
innovation and creativity to development teams.

For a scrum team to be self-managing, you need an environment of trust. Every-
one on the scrum team must trust one another to do his or her best for the scrum
team and the product. The scrum team’s company or organization must also trust
the scrum team to be competent, to make decisions, and to manage itself. To cre-
ate and maintain an environment of trust, each member of the scrum team must
commit, individually and as a team, to the product and to one another.

Self-managing development teams create better product architectures, require-
ments, and design for a simple reason: ownership. When you give people the free-
dom and responsibility to solve problems, they are more mentally engaged in
their work.

Scrum team members play roles in all areas of development. Table 16-2 shows
how scrum teams and development teams manage scope, procurement, time,
cost, team dynamics, communication, stakeholders, quality, and risk.

CHAPTER 16 Managing Team Dynamics and Communication 311

TABLE 16-2 Product Management and Self-Managing Teams
Area of Product
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Scope Use the product vision, the
release goal, and each sprint
goal to determine if and
where scope items belong.

Use product backlog prioriti-
zation to determine which
requirements are
developed.

May suggest features
based on technical affinity.

Work directly with the
product owner to clarify
requirements.

Identify how much work
they can take on in a
sprint.

Identify the tasks to com-
plete scope in the sprint
backlog.

Determine the best way to
create specific features.

Remove impediments
that limit the amount of
scope the development
team can create.

Through coaching, help
development teams
become more produc-
tive with each successive
sprint.

Procurement Secure necessary funding
for tools and equipment for
development teams.

Identify the tools they need
to create the product.

Work with the product
owner to get those tools.

Help procure tools and
equipment that acceler-
ate development team
velocity.

Time Ensure that the develop-
ment team correctly under-
stands product features so
that development teams can
correctly estimate the effort
to create those features.

Use velocity — development
speed — to forecast long-
term timelines.

Provide effort estimates
for product features.

Identify what features they
can create in a given time
frame — the sprint.

Often provide time esti-
mates for tasks in each
sprint.

Choose their own daily
schedules and manage
their own time.

Facilitate estimation
poker games.

Help development teams
increase velocity, which
affects time.

Shield the team from
organizational time-
wasters and distractions.

Cost Ultimately responsible for
the budget and return on
investment.

Use velocity to forecast
long-term costs, based on
timelines.

Provide effort estimates
for product features.

Facilitate estimation
poker games.

Help development teams
increase velocity, which
affects cost.

(continued)

312 PART 4 Agility Management

TABLE 16-2 (continued)

Area of Product
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Team dynamics Commit to their product as
an integrated peer member
of the scrum team.

Prevent bottlenecks by
working cross-functionally,
and are willing to take on
different types of tasks.

Continuously learn and
teach one another.

Commit, both individually
and as part of the scrum
team, to their product and
to one another.

Strive to build consensus
when making important
decisions.

Facilitate scrum team
collocation.

Help remove impedi-
ments to scrum team
self-management.

Servant-leaders who are
integrated members of
the scrum team.

Strive to build consensus
within the scrum team
when making important
decisions.

Facilitate relationships
between the scrum team
and stakeholders.

Communication Communicate information
about the product and the
business needs to develop-
ment teams on an ongoing
basis.

Communicate information
about the development
progress to stakeholders.

Help present working func-
tionality to stakeholders at
the sprint review meetings
at the end of each sprint.

Inspect progress, coordi-
nate upcoming tasks, and
identify roadblocks in their
daily scrum meetings.

Keep the sprint backlog
up-to-date daily, providing
accurate, immediate infor-
mation about development
status.

Present working function-
ality to stakeholders at the
sprint review meetings at
the end of each sprint.

Encourage face-to-face
communication between
all scrum team
members.

Foster close cooperation
between the scrum team
and other departments
within the company or
organization.

Stakeholders Set vision, release, and
sprint goal expectations.

Shield development team
from business noise.

Collect feedback during
sprint reviews.

Gather requirements
throughout project.

Communicate release dates
and how new feature
requests affect release
dates.

Demonstrate working func-
tionality at sprint reviews.

Work through product
owner to decompose
requirements.

Report on progress
through release and sprint
burndown charts.

Update task status no less
than at the end of each
day.

Coach on scrum and
agile principles as they
relate to their interaction
with the scrum team.

Shield developers from
non-business
distractions.

Facilitate sprint reviews
for gathering feedback.

Facilitate interactions
outside sprint reviews.

CHAPTER 16 Managing Team Dynamics and Communication 313

All in all, people developing products using agile techniques tend to find a great
deal of job satisfaction. Self-management speaks to a deeply rooted human desire
for autonomy — to control our own destiny — and allows people this control on a
daily basis.

The next section discusses another reason that people who use agile product
development techniques are happy: the servant-leader.

Area of Product
Management

How Product Owners
Self-Manage

How Development
Teams Self-Manage

How Scrum Masters
Self-Manage

Quality Add and clarify acceptance
criteria to requirements.

Ensure that the develop-
ment team correctly under-
stands and interprets
requirements.

Provide development teams
with feedback about the
product from the organiza-
tion and from the
marketplace.

Accept functionality as done
during each sprint.

Commit to providing tech-
nical excellence and good
design.

Test their work throughout
the day and comprehen-
sively test all development
each day.

Inspect their work and
adapt for improvements at
sprint retrospective meet-
ings at the end of each
sprint.

Help facilitate the sprint
retrospective.

Help ensure face-to-face
communication between
scrum team members,
which in turn helps
ensure quality work.

Help create a sustainable
development environ-
ment so that the devel-
opment team can
perform at its best.

Risk Look at overall product risks
as well as risks to their ROI
commitment.

Prioritize high-risk items on
the product backlog near
the top to address them
sooner rather than later.

Identify and develop the
risk mitigation approach
for each sprint.

Alert the scrum master to
roadblocks and
distractions.

Use information from each
sprint retrospective to
reduce risk in future
sprints.

Embrace cross-functionality
to reduce risk if one mem-
ber unexpectedly leaves
the team.

Commit to delivering ship-
pable functionality at the
end of each sprint, reduc-
ing overall product risk.

Help prevent roadblocks
and distractions.

Help remove roadblocks
and identified risks.

Facilitate development
team conversations
about possible risks.

314 PART 4 Agility Management

Supporting the team: The servant-leader
The scrum master serves as a servant-leader, someone who leads by removing
obstacles, preventing distractions, and helping the rest of the scrum team do its
job to the best of its ability. Agile leaders help find solutions rather than assign
tasks. Scrum masters coach, trust, and challenge the scrum team to manage itself.

Other members of the scrum team can also take on servant leadership roles. While
the scrum master helps get rid of distractions and roadblocks, the product owner
and members of the development team can also help where needed. The product
owner can lead by proactively providing important details about the product needs
and quickly providing answers to questions from the development team. Develop-
ment team members can teach and mentor one another as they become more
cross-functional. Each person on a scrum team may act as a servant-leader at
some point during product development. The servant leadership mindset perme-
ates the entire team.

Larry Spears identified ten characteristics of a servant-leader in his paper, “The
Understanding and Practice of Servant-Leadership” (Servant Leadership Round-
table, School of Leadership Studies, Regent University, August 2005). Here are
those characteristics, along with our additions for how each characteristic can
benefit the team dynamics.

 » Listening: Listening closely to other members of the scrum team will help the
people on the scrum team identify areas to help one another. A servant-
leader may need to listen to what people are saying, as well as what people
are not saying, in order to remove obstacles.

 » Empathy: A servant-leader tries to understand and empathize with people on
the scrum team, and to help them understand one another.

 » Healing: Healing can mean undoing the damage of non-people-centric
processes. These are processes that treat people like equipment and other
replaceable parts. Many traditional project management approaches can be
described as being non-people-centric.

 » Awareness: The people on the scrum team may need to be aware of activities
on many levels to best serve the scrum team.

 » Persuasion: Servant-leaders rely on an ability to convince, rather than on
top-down authority. Strong persuasion skills, along with organizational clout
or influence, will help a scrum master advocate for the scrum team to the
company or organization. A servant-leader can also pass along persuasion
skills to the rest of the scrum team, helping maintain harmony and build
consensus.

CHAPTER 16 Managing Team Dynamics and Communication 315

 » Conceptualization: Each member of a scrum team can use conceptualization
skills. The changing nature of agile lifecycles encourages the scrum team to
envision ideas beyond those at hand. A servant-leader will help nurture the
scrum team’s creativity, both for the development of the product and for team
dynamics.

 » Foresight: Scrum teams gain foresight with each sprint retrospective.
By inspecting its work, processes, and team dynamics on a regular basis,
the scrum team can continuously adapt and understand how to make better
decisions for future sprints.

 » Stewardship: A servant-leader is the steward of the scrum team’s needs.
Stewardship is about trust. Members of the scrum team trust one another to
look out for the needs of the team and the product as a whole.

 » Commitment to the growth of people: Growth is essential to a scrum
team’s ability to be cross-functional. A servant-leader will encourage and
enable a scrum team to learn and grow.

 » Building community: A scrum team is its own community. A servant-leader
will help build and maintain positive team dynamics within that community.

Servant leadership works because it positively focuses on individuals and interac-
tions, a key tenet of agile product development. Much like self-management,
servant leadership requires trust and respect.

The concept of servant leadership is not specific to agile product development.
If you have studied management techniques, you may recognize the works of
Robert K. Greenleaf, who started the modern movement for servant leadership —
and coined the term servant-leader — in an essay in 1970. Greenleaf founded the
Center for Applied Ethics, now known as the Greenleaf Center for Servant Leader-
ship, which promotes the concept of servant leadership worldwide.

Another servant-leader expert, Kenneth Blanchard, co-wrote with Spencer
Johnson the One Minute Manager (published by William Morrow), wherein he
describes characteristics that make great managers of high-functioning people
and teams. (The book has since been updated as The New One-Minute Manager,
published by Harper Collins India.) The reason the managers Blanchard studied
were so effective is because they focused on ensuring that the people doing the
work had direction, resources, and protection from noise to do their job as quickly
as possible.

The next two sections largely relate to team factors for scrum team success: the
dedicated team and the cross-functional team.

316 PART 4 Agility Management

Working with a dedicated team
Having a dedicated scrum team provides the following important benefits:

 » Keeping people focused on one goal at a time helps prevent distractions.
Dedication to one goal, such as a sprint goal, increases productivity by
reducing task-switching — moving back and forth between different tasks
without really completing any of them.

 » Dedicated scrum teams have fewer distractions — and fewer distrac-
tions mean fewer mistakes. When a person doesn’t have to meet the
demands of more than one initiative, that person has the time and clarity to
ensure his or her work is the best it can be. Chapter 17 discusses ways to
increase product quality in detail.

 » When people work on dedicated scrum teams, they know what they will
be working on every day. An interesting reality of behavioral science is that
when people know what they will be working on in the immediate future, their
minds engage those issues consciously at work and unconsciously outside the
work environment. Stability of tasks engages your mind for much longer each
day, enabling better solutions and higher quality products.

 » Dedicated scrum team members are able to innovate more. When people
immerse themselves in a product without distractions, they can come up with
creative solutions for product functionality.

 » People on dedicated scrum teams are more likely to be happy in their
jobs. By being able to concentrate on one goal, a scrum team member’s job is
easier. Many, if not most, people enjoy producing quality work, being produc-
tive, and being creative. Dedicated scrum teams lead to higher satisfaction.

 » When you have a dedicated scrum team working the same amount of
time each week, you can accurately calculate velocity — the team’s
development speed. In Chapter 15, we talk about determining a scrum
team’s velocity at the end of each sprint and using velocity to determine
long-term timelines and costs. Because velocity relies on comparing output
from one sprint to the next, using velocity to forecast time and cost works
best if the scrum team’s work hours are constant. If you are unable to have a
dedicated scrum team, at least try to have team members allocated to your
development effort for the same amount of time each week.

The idea of the productive multitasker is a myth. In the past 25 years, and espe-
cially in the last decade, a number of studies have concluded that task-switching
reduces productivity, impairs decision-making skills, and results in more errors.

To have a dedicated scrum team, you need strong commitment from your organi-
zation. Many companies ask employees to work on multiple objectives or goals at

CHAPTER 16 Managing Team Dynamics and Communication 317

one time, under the mistaken assumption that they will save money by hiring
fewer people. When companies start to embrace a more agile mindset, they learn
that the least expensive approach is to reduce defects and raise development pro-
ductivity through focus.

Work in progress is expensive inventory and creates no value. Scrum teams con-
tinually seek to reduce work in progress through focus and dedication.

Each member of the scrum team can help ensure dedication:

 » If you’re a product owner, make sure that the company knows that a dedi-
cated scrum team is a good fiscal decision. You are responsible for product
return on investment, so be willing to fight for your product’s success.

 » If you’re a member of the development team and anyone requests that you
do work outside the current sprint goal, you can push back and involve the
product owner or scrum master, if necessary. A request for outside work,
regardless of how benign, is a potentially expensive distraction.

 » If you’re a scrum master, as the expert on agile approaches, you can educate
the company on why a dedicated scrum team means decreased work in
progress and increased productivity, quality, and innovation. A good scrum
master should also have the organizational clout to keep the company from
poaching people from the scrum team for other development efforts. See
Chapter 8 to learn more about the importance of stable, long-lived, and even
permanent teams.

Another characteristic of scrum teams is that they are cross-functional.

Working with a cross-functional team
Cross-functional development teams are also important. The development team
doesn’t just include programmers — people writing software code; it includes all
the people who will have a job during development to transform a product require-
ment into something that is valuable and shippable. For non-software scrum
teams, there won’t be any programmers, but there will be people with the range
of skills needed to create the product.

For example, a scrum team developing software would include people with pro-
gramming, database, quality assurance, usability, graphics, design and infra-
structure skills. While each person has specialties, being cross-functional means
that everyone on the team is willing to pitch in on different parts of development,
as much as possible. The same is true for non-software products.

318 PART 4 Agility Management

As a member of a development team, you continuously ask yourself two ques-
tions: “What can I contribute today?” and “How can I expand my contribution in
the future?” Everyone on the development team will use his or her current skills
and specialties in each sprint. Cross-functionality gives development team mem-
bers the opportunity to learn new skills by working on areas outside of their
expertise. Cross-functionality also allows people to share their knowledge with
their fellow development team members. You don’t need to be a jack-of-all-
trades to work on a development team, but you should be willing to learn new
skills and help with all kinds of tasks. To learn more about building individual and
team capability, see the T-shaped, pi-shaped and M-shaped models discussed in
Chapter 7.

Although task-switching decreases productivity, cross-functionality works
because you’re not changing the context of what you are working on; you’re look-
ing at the same problem from a different perspective. Working on different aspects
of the same problem increases knowledge depth and your ability to do a better job.

The biggest benefit of a cross-functional development team is the elimination of
single points of failure. If you have worked on a project before, how many times
have you experienced delays because a critical member of the team is on vacation,
out sick, or, worse, has left the company? Vacations, illness, and turnover are facts
of life, but with a cross-functional development team, other team members can
jump in and continue work with minimal disruption. Even if an expert leaves the
team unexpectedly and abruptly, other development team members will know
enough about the work to keep it progressing.

Development team members go on vacation or catch the flu. Don’t sabotage your
team by having only one person know a skill or functional area.

Cross-functionality takes strong commitment from the development team, both
as individual members and as a group. The old phrase, “There is no i in team” is
especially true with agile development. Working on a development team is about
skills, rather than titles.

Development teams without titles are more merit-based because team seniority
and status is based on current knowledge, skills, and contribution.

Letting go of the idea that you’re a “senior quality assurance tester” or a “junior
developer” can require a new way of thinking about yourself. Embracing the con-
cept of being part of a cross-functional development team may take some work,
but it can be rewarding as you learn new skills and develop a rhythm of teamwork.

When developers also test, they create code that is test-friendly.

Having a cross-functional development team also requires commitment and sup-
port from your organization. Some companies eliminate titles or keep them

CHAPTER 16 Managing Team Dynamics and Communication 319

intentionally vague (you might see something like “application development”) to
encourage teamwork. Other techniques for creating a strong cross-functional
development team from an organizational standpoint include offering training,
recognizing scrum teams as a whole, and being willing to make changes if a par-
ticular person does not fit in with a team environment. When hiring, your com-
pany can actively look for people who will work well in a highly collaborative
environment, who want to learn new tasks, and who are willing to work on all
areas of development.

Both the physical environment and the cultural environment of an organization
are important keys to success. The next section shows you how.

Reinforcing openness
As we explain in other chapters, a collocated scrum team is ideal. The Internet has
brought people together globally, but nothing — not the best combination of
emails, instant messages, videoconferencing, phone calls, and online collabora-
tion tools — can replace the simplicity and effectiveness of a face-to-face conver-
sation. Figure 16-1 illustrates the difference between an email exchange and a
conversation in person.

The idea of scrum team members working in the same physical location and being
able to talk in person, instantly, is important to team dynamics. You find more
details on communication later in this chapter. Also, Chapter 6 provides details on
how to set up both physical and virtual environments for a scrum team to com-
municate effectively.

Having a cultural environment of openness, which is conducive to scrum team
growth, is another success factor. Everyone on a scrum team should be able to

 » Feel safe.

 » Speak his or her mind in a positive way.

 » Challenge the status quo.

 » Be open about challenges without being penalized.

 » Request resources that will make a difference.

 » Make mistakes and learn from them.

 » Suggest change and have other scrum team members seriously consider
those changes.

 » Respect fellow scrum team members.

 » Be respected by other members of the scrum team.

320 PART 4 Agility Management

Trust, openness, and respect are fundamental to team dynamics.

Some of the best product and process improvements come from novices asking
“silly” questions.

Another facet of scrum team dynamics is the concept of the size-limited team.

Limiting development team size
An interesting psychological aspect of team dynamics is the number of people on
a development team. Scrum development teams usually have between three and
nine people. An ideal size is somewhere in the middle.

Limiting development team size to this range provides a team with enough diverse
skills to take a requirement from paper to production while keeping communica-
tion and collaboration simple. Development team members can easily interact
with one another and make decisions by consensus.

FIGURE 16-1:
Email versus
face-to-face

conversation.

CHAPTER 16 Managing Team Dynamics and Communication 321

When you have development teams with more than nine people, the people on
those teams tend to break into subgroups and build silos. This is normal social
human behavior, but subgroups can be disruptive to a development team striving
to be self-managing. It is also more difficult to communicate with larger develop-
ment teams; there are more communication channels and opportunities to lose or
misconstrue a message.

Development teams with fewer than nine people, on the other hand, tend to nat-
urally gravitate to an agile approach. However, development teams that are too
small may find working cross-functionally difficult because there may not be
enough people with varying skills on the team.

If your product development requires more than nine development team members
or you think you need to create a position to improve intra-team communication,
consider breaking up the work between multiple scrum teams instead. Find details
on how to work with multiple scrum teams in Chapters 15 and 19.

Managing product development
with dislocated teams
As we say throughout the book, a collocated scrum team is ideal for agile product
development. However, sometimes it isn’t possible for a scrum team to work
together in one place. Dislocated teams (teams with people who work in different
physical locations), as we all witnessed during the COVID-19 pandemic, exist for
many reasons and in different forms.

In some companies, people with the right skills for a team may work in different
offices, and the company may not want the cost of bringing those people together
for the duration of development. Some organizations work jointly with other
organizations on development, but may not want or be able to share office space.
Some people may telecommute, especially contractors, live long distances from
the company they work with, and never visit that company’s office. Some compa-
nies work with offshore groups and create products with people from other
countries.

If you need to offshore, then offshore with both feet. Collocate entire scrum teams
with the product owner, development team, and scrum master together. You may
have one scrum team in one physical location, and another at a different physical
location, but organize your scrum teams to be together.

The good news is that you can still develop with a dislocated scrum team or teams.
If you have to work with a dislocated team, we’ve found that an agile approach
allows you to see working functionality much sooner and limits the risk of

322 PART 4 Agility Management

inevitable misunderstandings that a dislocated team will experience. Dislocated
teams are often more effective taking an agile approach by using scrum than
without it.

Table 16-3, from Ambysoft’s “Agile Adoption Rate Survey Results” in 2008, shows
a comparison of success rates for products developed with collocated scrum teams
against those with geographically dispersed scrum teams. Even for teams sepa-
rated by large distances, with scrum they still have high success rates.

How do you successfully develop a product with a dislocated scrum team? We have
three words: communicate, communicate, and communicate. Because daily in-
person conversations are not possible throughout the entire day, dislocated scrum
teams require unique efforts by everyone working on the product. Here are some
tips for successful communication among non-collocated scrum team members:

 » Use videoconferencing technology to simulate face-to-face conversations.
The majority of interpersonal communication is visual, involving facial cues, hand
gestures, and even shoulder shrugs. Videoconferencing enables people to see
one another and benefit from nonverbal communication as well as a discussion.
Use videoconferencing liberally throughout the day, not just for sprint meetings.
Make sure team members are ready for impromptu video chats and have the
necessary equipment, such as sufficient bandwidth, microphones, headphones
and multiple monitors, to make videoconferencing successful.

 » If possible, arrange for the scrum team members to meet in-person in a
central location at least once at the beginning of the development, and
preferably multiple times throughout. The shared experience of meeting
in-person, even once or twice, can help build teamwork among dislocated
team members. Working relationships built through face-to-face visits are
stronger and carry on after the visit ends.

TABLE 16-3 Success of Collocated and Dislocated Scrum Teams

Team Location
Success
Percentage

Collocated scrum team (everyone on the team is in the same physical location) 83%

Dislocated but physically reachable (team members work in different physical loca-
tions but can travel to be face to face)

72%

Distributed across geographies (team members are separated significantly, for exam-
ple, by time zones)

60%

“Agile Adoption Rate Survey Results” (Scott W. Ambler, Ambysoft, Copyright © 2008)

CHAPTER 16 Managing Team Dynamics and Communication 323

 » Use an online collaboration tool. Some tools simulate whiteboards and user
story cards, track conversations, and enable multiple people to update
artifacts at the same time.

 » Include scrum team members’ pictures on online collaboration tools, or
even in email address signature lines. Humans respond to faces more than
written words alone. A simple picture can help humanize instant messages
and emails.

 » Be cognizant of time zone differences. Put multiple clocks showing different
time zones on the wall so you don’t accidentally call someone’s cellphone at
3 a.m. and wake up that person — or wonder why he or she isn’t answering.

 » Be flexible because of time zone differences as well. You may need to take
video calls or phone calls at odd hours from time to time to help keep work
moving. For drastic time zone differences, consider trading off on times you
are available. One week, Location A can be available in the early morning. The
next, Location B can be available later in the evening. That way, no one always
has an inconvenience.

 » If you have any doubt about a conversation or a written message, ask
for clarification by phone or video. It always helps to double-check when
you’re unsure of what someone meant. Follow up with a call to avoid mistakes
from miscommunication. Additional communication effort is required for a
successful dislocated team.

 » Be aware of language and cultural differences between scrum team
members, especially when working with groups in multiple countries.
Understanding colloquialisms and pronunciation differences can increase the
quality of your communication across borders. It helps to know about local
holidays, too. We’ve been blindsided more than once by closed offices outside
our region, which is another reason to meet in-person in each other’s physical
locations.

 » Make an extra attempt to discuss non-work topics sometimes. Discussing
non-work topics helps you grow closer to scrum team members, regardless of
location.

With dedication, awareness, and strong communication, distributed agile devel-
opment can succeed.

The unique approaches to team dynamics is part of what make agile product
development successful. Communication is closely related to team dynamics, and
agile communication methods have big differences from traditional projects, as
you see in the following section.

324 PART 4 Agility Management

What’s Different about Agile
Communication?

Communication, in project management terms, is the formal and informal ways
the people on the project team convey information to each other. As with traditional
projects, good communication is a necessity for agile product development.

However, the agile principles set a different tone, emphasizing simplicity, direct-
ness, and face-to-face conversations. The following agile principles relate to
communication:

4. Business people and developers must work together daily throughout the
project.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The Agile Manifesto also addresses communication, valuing working software
over comprehensive documentation. Although documentation has value, working
functionality is more important.

Table 16-4 shows some differences between communication on traditional proj-
ects and agile development.

The question of how much documentation is required is not a volume question but
an appropriateness question. Why do you need a specific document? How can you
create it in the simplest way possible? You can use poster-sized sticky sheets to
put on the wall and make information digestible. This can also work best for visu-
ally conveying artifacts such as the vision statement, the definition of done, the
impediments log, and important architectural decisions. Pictures truly are worth
a thousand words.

The following sections show how to take advantage of the agile framework’s
emphasis on in-person communication, focus on simplicity, and value of working
functionality as a communication medium.

CHAPTER 16 Managing Team Dynamics and Communication 325

Managing Agile Communication
To manage communication with agile product development, you need to under-
stand how different agile communication methods work and how to use them
together. You also need to know why status is different and how to report progress
to stakeholders. The following sections show you how.

Understanding agile communication
methods
You can communicate through artifacts, meetings, and informally.

Face-to-face conversations are the heart and soul of agile product development.
When scrum team members talk with one another about the product throughout
every day, communication is easy. Over time, scrum team members understand
each other’s personality, communication style, and thought processes, and will be
able to communicate quickly and effectively.

Figure 16-2, from Alistair Cockburn’s presentation Software Development as a
Cooperative Game, shows the effectiveness of face-to-face communication versus
other types of communication.

TABLE 16-4 Traditional versus Agile Communication
Communication Management with
Traditional Approaches Communication Management with Agile Approaches

Team members might make no special effort
for in-person conversations.

Agile approaches value face-to-face communication as the
best way to convey information.

Traditional approaches place high value on
documentation. Teams may create a large
number of complex documents and status
reports based on process, rather than con-
sidering actual need.

Agile documents, or artifacts, are intentionally simple and
provide information that is barely sufficient. Agile artifacts
only contain essential information and can often convey sta-
tus at a glance.

Teams use the show, don’t tell concept, showing working
functionality to communicate progress on a regular basis in
the sprint review.

Team members may be required to attend a
large number of meetings, whether or not
those meetings are useful or necessary.

Meetings are, by design, as quick as possible and include
only people who will add to the meeting and benefit from
the meeting. Agile meetings provide all the benefits of face-
to-face communication without wasting time. The structure
of agile meetings is to enhance, not reduce, productivity.

326 PART 4 Agility Management

In previous chapters, we describe a number of artifacts and meetings that fit with
agile development. All the agile artifacts and meetings play a role in communica-
tion. Agile meetings provide a format for communicating in a face-to-face
environment. Agile meetings have a specific purpose and a specific amount of
time so that the development team can work, rather than sit in meetings. Agile
artifacts provide a format for written communication that is structured but not
cumbersome or unnecessary.

Table 16-5 provides a view of the different communication channels with agile
product development.

FIGURE 16-2:
Comparison of

communication
types.

Copyright © Humans and Technology, Inc.

TABLE 16-5 Agile Communication Channels
Channel Type Role in Communication

Release planning
and sprint
planning

Meetings Planning meetings have specific desired outcomes or are focused on a spe-
cific scope of work driven by a business goal, and concisely communicate
the purpose and details of the release, and the sprint to the scrum team.
Learn more about planning meetings in Chapters 9 and 10.

Product vision
statement

Artifact The product vision statement communicates the end goal of the product to
the team and the organization. Find out more about the product vision in
Chapter 9.

Product
roadmap

Artifact The product roadmap communicates a long-term view of the features that
support the product vision and are likely to be part of the product. Find out
more about the product roadmap in Chapter 9.

CHAPTER 16 Managing Team Dynamics and Communication 327

Channel Type Role in Communication

Product backlog Artifact The product backlog communicates the scope of the product as a whole to
the team. Find out more about the product backlog in Chapters 9 and 10.

Release plan Artifact The release plan communicates the goal and timing for a specific release.
Find out more about the release plan in Chapter 10.

Sprint backlog Artifact When updated daily, the sprint backlog provides immediate sprint and
development status to anyone who needs that information. The burndown
chart on the sprint backlog provides a quick visual of the sprint progress.
Find out more about the sprint backlog in Chapters 10 and 11.

Task board Artifact Using a task board visually radiates the status of the current sprint or
release to anyone who walks by the scrum team’s work area. As a team
member moves a completed task, everyone knows it’s time for the next
task. Find out more about the task board in Chapter 11.

Daily scrum Meeting The daily scrum provides the scrum team with a verbal, face-to-face oppor-
tunity to coordinate the priorities of the day and identify any challenges.
Find out more about daily scrum meetings in Chapter 11.

Face-to-face
conversations

Informal Face-to-face conversations are the most effective mode of communication.

Sprint review Meeting The sprint review is the embodiment of show, don’t tell, philosophy. Display-
ing working functionality to the entire team conveys progress in a more
meaningful way than a written report or a conceptual presentation ever
could. Find out more about sprint reviews in Chapter 12.

Sprint
retrospective

Meeting The sprint retrospective allows the scrum team to communicate with one
another specifically for improvement. Find out more about sprint retrospec-
tives in Chapter 12.

Meeting notes Informal Meeting notes are an optional, informal communication method. Meeting
notes can capture action items from a meeting to ensure that people on the
scrum team remember them for later.

Notes from a sprint review are updated product backlog items.

Notes from a sprint retrospective are action items added to the product
backlog for consideration in a future sprint and remind the scrum team of
plans for improvement.

Collaborative
solutions

Informal Whiteboards, sticky notes, and electronic collaboration tools all help the
scrum team communicate. Ensure that these tools augment, rather than
replace, face-to-face conversations. Capturing and saving collaboration
results is a low-fidelity way to remind the team of decisions made for imme-
diate and future consideration. Digital versions of these can be effective.

328 PART 4 Agility Management

Artifacts, meetings, and more informal communication channels are all tools.
Keep in mind that even the best tools need people to use those tools correctly to be
effective. Agility is about people and interactions; tools are secondary to success.

The next section addresses a specific area of agile communication: status reporting.

Status and progress reporting
All products have stakeholders, people outside the immediate scrum team who
have a vested interest in the product. At least one of the stakeholders is the person
responsible for paying for your development (the sponsor). It is important for
stakeholders, especially those responsible for budgets, to know how development
is progressing. This section shows how to communicate your status.

Status for scrum teams is a measure of the features that the team has completed.
Using the definition of done from Chapters 2, 10, 12, and 17, a feature is complete
if the scrum team has developed, tested, integrated, and documented that feature,
per the agreement between the product owner and the development team.

If you’ve worked on a traditional project, how many times have you been in a sta-
tus meeting and reported that the project was, say, 64 percent complete? If your
stakeholders had replied, “Great! We would like that 64 percent now; we ran out
of funds,” you and the stakeholders alike would be at a loss, because you didn’t
mean that 64 percent of your features were ready to use. You meant that each one
of the product features was only 64 percent in progress, you had no working func-
tionality, and you still had a lot of work to do before anyone could use the product.

Working functionality that meets the definition of done is the primary measure of
progress. You can confidently say that product features are complete. Because
scope changes constantly, you would not express status as a percentage. Instead,
a list of potentially shippable features would be more interesting for stakeholders
to see as it grows.

Track the progress of your sprint and release daily. Your primary tools for com-
municating status and progress are the task board, sprint backlog, product back-
log, release and sprint burndown charts, and the sprint review.

The sprint review is where you demonstrate working software to your stakehold-
ers. Resist creating slides or handouts; the key to the sprint review is showing
your stakeholders progress as a demonstration, rather than only telling them
what you completed. Principle 7 says, “Working software is the primary measure
of progress.” Show, don’t tell.

CHAPTER 16 Managing Team Dynamics and Communication 329

Strongly encourage anyone who may have an interest in your product to come to
your sprint reviews. When people see the working functionality in action, espe-
cially on a regular basis, they get a much better sense of the work you’ve
completed.

Don’t get sucked in to double work agile. Companies and organizations that are
starting out using agile techniques may expect to see traditional status reports, in
addition to agile artifacts. These organizations may also want members of the
scrum team to attend regular status meetings, outside the daily scrums and other
agile meetings. This is called double work agile because you are doing twice as
much work as necessary. Double work agile is one of the top pitfalls for agile
adoptions. Scrum teams will burn out quickly if they try to meet the demands of
two drastically different development approaches. You can avoid double work
agile by educating your company about why agile artifacts and events are a better
replacement for old documents and meetings. Insist on experimenting with agile
artifacts and events.

The sprint backlog is a report of the daily status of your current sprint. The sprint
backlog contains the sprint’s user stories and their related tasks and estimates.
The sprint backlog also often has a burndown chart that visually shows the status
of the work the development team has completed and the remaining work to com-
plete the requirements in the sprint. The development team is in charge of updat-
ing the sprint backlog at least once a day by updating the number of hours of work
remaining for each task. The sprint backlog provides the daily status, so you don’t
need to spend time on status in your daily scrum. Your daily scrum is for coordi-
nating work for the day, not for status.

If you’re a project manager now, or if you study project management in the future,
you may come across the concept of earned value management (EVM), as a way of
measuring project progress and performance. Some agile practitioners try to use
an agile-like version of EVM, but we avoid EVM for agile product development.
EVM assumes that your project has a fixed scope, which is antithetical to an agile
approach. Instead of trying to change agile approaches to fit into old models, use
the tools here — they work.

The burndown chart quickly shows, rather than tells, status. When you look at a
sprint burndown chart, you can instantly see whether the sprint is going well or
might be in trouble. In Chapter 11, we show you an image of sample burndown
charts for different sprint scenarios; here it is again in Figure 16-3.

If you update your sprint backlog every day, you’ll always have an up-to-date
status for your stakeholders. You can also show them the product backlog so that
they know which features the scrum team has completed to date, which features
will be part of future sprints, and the priority of the features.

330 PART 4 Agility Management

The product backlog will change as you add and reprioritize features. Make sure
that people who review the product backlog, especially for status purposes, under-
stand this concept.

A task board is a great way to quickly show your team the status of a sprint,
release, or even of the entire product. Task boards have sticky notes with user
story titles in at least four columns: To Do, In Progress, Accept, and Done. If you
display your task board in the scrum team’s work area, anyone who walks by can
see a high-level status of which product features are done and which features are
in progress. The scrum team always knows where development stands, because
the team sees the task board every day. See an example of a task board in
Chapter 6.

Always strive for simple, low-fidelity information radiators to communicate sta-
tus and progress. The more you can make information accessible and on-demand,
the less time you and your stakeholders will spend preparing and wondering
about status.

FIGURE 16-3:
Profiles of
burndown

charts.

CHAPTER 17 Managing Quality and Risk 331

Chapter 17
Managing Quality
and Risk

Quality and risk are closely related parts of product development. In this
chapter, you find out how to deliver quality products using agile methods.
You understand how to take advantage of agile approaches to manage

product risk. You see how quality has historically affected risk, and how agile
quality management fundamentally reduces risk.

What’s Different about Agile Quality?
Quality refers to whether a product works, and whether it fulfills the stakeholders’
and customers’ needs. Quality is an inherent part of agile product management.
All 12 Agile Principles that we list in Chapter 2 promote quality either directly or
indirectly. Those principles follow:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

IN THIS CHAPTER

 » Learning how agile quality
approaches reduce risk

 » Discovering ways to ensure quality
product development

 » Taking advantage of automated
testing for better productivity

 » Understanding how agile
development approaches reduce risk

332 PART 4 Agility Management

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity — the art of maximizing the amount of work not done — is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

These principles emphasize creating an environment where teams are able to
produce valuable, working functionality. Agile approaches encourage quality
both in the sense of products working correctly and meeting the needs of
stakeholders.

Table 17-1 shows some differences between quality management on traditional
projects and agile product development.

BUGS. BUGS? BUGS!
Why do we call computer problems bugs? The first computers were large, glass-encased
machines that took up entire rooms. In 1947, one of these behemoth computers, the
Mark II Aiken Relay Calculator at Harvard University, had problems with one of its cir-
cuits. Engineers traced the issue to a moth — a literal bug — in the machine. After that,
the team’s running joke was that any issue with the computer had to be a bug. The term
stuck, and people still use bug today to describe hardware problems, software prob-
lems, and sometimes even problems outside of the computer science realm. The engi-
neers at Harvard even taped the moth to a logbook. That first bug was on display for
years at the Smithsonian National Museum of American History.

CHAPTER 17 Managing Quality and Risk 333

At the start of this chapter, we state that quality and risk are closely related. The
agile approaches in Table 17-1 greatly reduce the risk and unnecessary cost that
usually accompany deferred quality management.

Another difference about quality is the multiple quality feedback loops throughout
development. In Figure 17-1, you see the different types of product feedback a
scrum team receives in the course of development. The development team can
immediately incorporate this feedback into the product, increasing product qual-
ity on a regular basis.

TABLE 17-1 Traditional versus Agile Quality
Quality Management with
Traditional Approaches Quality Dynamics with Agile Approaches

Testing is the last phase of a project
before product deployment. Some
features are tested months after they
were created.

Testing is a daily part of each sprint and is included in each
requirement’s definition of done. You use automated testing,
allowing quick and robust testing every day.

Quality is often a reactive practice, with
the focus mostly on product testing
and issue resolution.

You address quality both reactively, through testing, and proac-
tively, encouraging practices to set the stage for quality work.
Examples of proactive quality approaches in software develop-
ment include face-to-face communication, pair programming, test-
driven development (also known as test-first development), and
established coding standards.

Problems are riskier when found at the
end of a project. Sunk costs are high
by the time teams reach testing.

You can create and test riskier features in early sprints, when sunk
costs are still low.

Problems or defects, sometimes called
bugs in software development, are
hard to find at the end of a project,
and fixes for problems at the end of a
project are costly.

Problems are easy to find when you frequently and incrementally
test smaller amounts of shippable work. Fixes are easier when you
fix something you just created, rather than something you created
months earlier.

Sometimes, to meet a deadline or save
money, teams cut the testing phase
short.

Testing is assured because it is part of every sprint to satisfy the
team’s definition of done.

FIGURE 17-1:
Quality feedback

cycles.

334 PART 4 Agility Management

In Chapter 16, we tell you that development teams include everyone who works on
a product. Development teams must include people who are experts in creating
and executing tests and ensuring quality. Development team members are cross-
functional; that is, every team member may do different jobs at different times
during development. Cross-functionality extends to quality activities such as pre-
venting issues, testing, and fixing bugs.

In the next section, you see how to use agile techniques to increase quality.

Managing Agile Quality
Agile development teams have the primary responsibility for quality. The respon-
sibility for quality is an extension of the responsibilities and freedoms that come
with self-management. When the development team is free to determine its
development methods, the development team is also responsible for ensuring that
those methods result in quality work.

Organizations often refer to quality management as a whole as quality assurance, or
QA. You may see QA departments, QA testers, QA managers, QA analysts, and all
other flavors of QA-prefixed titles to refer to people who are responsible for qual-
ity activities. QA is also sometimes used as shorthand for testing, as in “we per-
formed QA on the product” or “now we are in the QA phase.” QA usually refers to
whether the product meets the business or customer need for which it was cre-
ated. Quality control (QC) is also a common way to refer to quality management, but
it refers more directly to the technical quality of the product.

The other members of the scrum team — the scrum master and the product
owner — also play parts in quality management. Product owners provide clarifica-
tion on requirements and also accept those requirements as being done throughout
each sprint. Scrum masters help ensure development teams have a work environ-
ment where the people on development teams can work to the best of their
abilities.

Luckily, agile approaches have several ways to help scrum teams create quality
products. In this section, you see how testing in sprints increases the likelihood of
finding defects and reduces the cost of fixing them. You gain an understanding of
the many ways agile development proactively encourages quality product devel-
opment. You see how inspecting and adapting on a regular basis addresses quality.
Finally, you find out how automated testing is essential to delivering valuable
products continuously throughout agile development.

CHAPTER 17 Managing Quality and Risk 335

Quality and the sprint
Quality management is a daily part of agile product development. Scrum teams run
development in sprints, short development cycles that last one to four weeks. Each
cycle includes activities from the different phases of a traditional project for each
user story in the sprint: requirements, design, development, testing, and integration
for deployment. Find out more about working in sprints in Chapters 10, 11, and 12.

Here’s a quick riddle: Is it easier to find a quarter on a table or in a stadium? Obvi-
ously, the answer is a table. Just as obvious is that it is easier to find a defect in a
single backlog item’s worth of development than in an entire product. Iterative
development makes quality product development easier.

Scrum teams test throughout each sprint. Figure 17-2 shows how testing fits into
sprints. Notice that testing begins in the first sprint, as soon as the development
team starts creating the first requirement.

When development teams test throughout each sprint, they can find and fix
defects very quickly. Development teams implement product requirements,
immediately test those requirements, and fix any problems immediately before
considering the work done. Instead of trying to remember how to fix something
they created weeks or months ago, development teams are, at the most, fixing the
requirement they worked on one or two days earlier.

Testing every day is a great way to ensure product quality. Another way to ensure
product quality is to create a better product from the start. The next section shows
you different ways that agile product development helps you avoid errors and cre-
ate an excellent product.

Proactive quality
An important and often-neglected aspect of quality is the idea of preventing
problems. A number of agile approaches allow and encourage scrum teams to
proactively create quality products. These practices include

 » An emphasis on technical excellence and good design

 » Incorporation of quality-specific development techniques into product creation

 » Daily communication between the development team and the product owner

 » Acceptance criteria built into user stories

 » Face-to-face communication and collocation

 » Sustainable development

 » Regular inspection and adaption of work and behavior

336 PART 4 Agility Management

FIGURE 17-2: Testing within sprints.

CHAPTER 17 Managing Quality and Risk 337

The following sections provide a detailed look at each of these proactive quality
practices.

Quality means both that a product works correctly and that the product does what
the stakeholders need it to do.

Continuous attention to technical
excellence and good design
Scrum teams focus on technical excellence and good design because these traits
lead to valuable products. How do development teams provide great technical
solutions and designs?

One way that development teams provide technical excellence is through self-
management, which provides them with the freedom to innovate technically. Tra-
ditional organizations may have mandatory technical standards that may or may
not make sense for a given project. Self-organizing development teams have the
freedom to decide whether a standard will provide value in creating a product, or
if a different approach will work better. Innovation can lead to good design, tech-
nical excellence, and product quality.

Self-management also provides development teams with a sense of product own-
ership. When people on development teams feel a deep responsibility for the
product they’re creating, they often strive to find the best solutions and execute
those solutions in the best way possible.

Nothing is more sophisticated than a simple solution.

Organizational commitment also plays a role in technical excellence. Some com-
panies and organizations, regardless of their product management approaches,
have a commitment to excellence. Think about the products that you use every day
and associate with quality; chances are those products come from companies that
value good technical solutions. If you’re working for a company that believes in
and rewards technical excellence, enacting this agile principle will be easy.

Other companies may undervalue technical excellence; scrum teams at these
companies may struggle when trying to justify training or tools that will help cre-
ate better products. Some companies do not make the connection between good
technology, good products, and profitability. Scrum masters and product owners
may need to educate their companies on why good technology and design are
important and may need to lobby to get development teams what they need to
create a great product.

338 PART 4 Agility Management

Don’t confuse technical excellence with using new technologies for the sake of
using something new or trendy. Your technology solutions should efficiently sup-
port the product needs, not just add to a resume or a company skills profile.

By incorporating technical excellence and good design into your everyday work,
you create a quality product that you are proud of.

Quality development techniques
During the past several decades of software development, the motivation to be
more adaptive and agile has inspired a number of agile development techniques
that focus on quality. This section provides a high-level view of a few extreme
programming (XP) development approaches that help ensure quality proactively.
For more information on XP practices, see Chapter 5.

Many agile quality management techniques were created with software develop-
ment in mind. You can adapt some of these techniques when creating other types
of products, such as hardware products or even building construction. If you’re
going to work on a non-software development effort, read about the development
methods in this section with adaptability in mind:

 » Test-driven development (TDD): This development method begins with a
developer creating a test for the requirement he or she wants to create. The
developer then runs the test, which should fail at first because the functional-
ity does not yet exist. The developer develops until the test passes, and then
refactors the code — takes out as much code as possible, while still having
the test pass. With TDD, you know that the newly created functionality of a
requirement works correctly because you test while you create the functional-
ity and develop the functionality until the test passes.

 » Pair programming: With pair programming, developers work in groups of
two. Both developers sit at the same computer and work as a team to execute
one development task. The developers take turns at the keyboard to collabo-
rate. Usually, the one at the keyboard takes a direct tactical role, while the
observing partner takes a more strategic or navigating role, looking ahead and
providing in-the-moment feedback. Because the developers are literally
looking over one another’s shoulder, they can catch errors quickly. Pair
programming increases quality by providing instant error checks and
balances.

 » Peer review: Sometimes called peer code review, a peer review involves
members of the development team reviewing one another’s work as soon as
it is completed. Like pair programming, peer reviews have a collaborative
nature; when developers review each other’s finished products, the develop-
ers work together to provide solutions for any issues they find. If development

CHAPTER 17 Managing Quality and Risk 339

teams don’t practice pair programming, they should at least practice peer
reviews, which increase quality by allowing development experts to look for
structural problems within the product.

 » Collective code ownership: In this approach, everyone on the development
team can create, change, or fix any part of the code. Collective code owner-
ship can speed up development, encourage innovation, and with multiple
pairs of eyes on the code, help development team members quickly find
defects.

 » Continuous integration: This approach involves the creation of integrated
code builds one or more times each day. Continuous integration allows
members of the development team to check how the user story it is creating
works with the rest of the product. Continuous integration helps ensure
quality by allowing the development team to check for conflicts regularly.
Continuous integration is essential to automated testing; you need to create a
code build with each check-in before running automated tests. Find out more
about automated testing later in this chapter.

With agile product development, the development team decides which tools and
techniques will work best for the sprints, the product, and the team.

Many agile software development techniques help ensure quality, and there is a
lot of discussion and information about these techniques in the community of
people who use agile approaches. We encourage you to learn more about these,
especially if you’re a developer. Entire books are dedicated to some of these tech-
niques, such as test-driven development. The information we provide here is at
the tip of the iceberg. See Chapter 24 for more recommendations.

The product owner and development team
Another aspect of agile product development that encourages quality is the close
relationship between the development team and the product owner. The product
owner is the voice of business needs for the product. In this role, the product
owner works with the development team every day to ensure that the functional-
ity meets those business needs.

During planning stages, the product owner’s job is to help the development team
understand each requirement correctly. During the sprint, the product owner
answers questions that the development team has about requirements and is
responsible for reviewing functionality and accepting them as done. When the
product owner accepts requirements, he or she ensures that the development
team correctly interpreted the business need for each requirement, and that the
new functionality performs the task that it needs to perform.

340 PART 4 Agility Management

In waterfall projects, feedback loops between developers and business owners are
less frequent, so a development team’s work typically strays from the original
product goals set in the product vision statement.

A product owner who reviews requirements daily catches misinterpretations early.
The product owner can then set the development team back on the right path,
avoiding wasted time and effort.

The product vision statement not only articulates the product’s goals but also
communicates how your product supports the company’s or organization’s strat-
egies. Chapter 9 explains how to create a product vision statement.

User stories and acceptance criteria
Another proactive quality measure with agile development is the acceptance cri-
teria you build into each user story. In Chapter 9, we explain that a user story is
one format for describing product requirements. User stories increase quality by
outlining the specific actions the user will take to correctly meet business needs.
Figure 17-3 shows a user story and its acceptance criteria.

Even if you don’t describe your requirements in a user story format, consider add-
ing validation steps to each of your requirements. Acceptance criteria don’t just
help the product owner review requirements; they help the development team
understand how to create the product in the first place.

Face-to-face communication
Have you ever had a conversation with someone and known, just by looking at
that person’s face, that he or she didn’t understand you? In Chapter 16, we explain
that face-to-face conversations are the quickest, most effective form of commu-
nication. This is because humans convey information with more than just words;
our facial expressions, gestures, body language, and even where we are looking
contribute to communicating and understanding one another.

FIGURE 17-3:
A user story and

acceptance
criteria.

CHAPTER 17 Managing Quality and Risk 341

Face-to-face communication helps ensure quality because it leads to better inter-
pretation of requirements, roadblocks, and discussions between scrum team
members.

Sustainable development
Chances are, at some point in your life, you’ve found yourself working or studying
long hours for an extended period of time. You may have even pulled an all-
nighter or two, getting no sleep at all for a night. How did you feel during this
time? Did you make good decisions? Did you make any silly mistakes?

Unfortunately, many teams on traditional projects find themselves working long,
crazy hours, especially toward the end of a project, when a deadline is looming
and it seems like the only way to finish is to spend weeks working extra-long
days. Those long days often mean more problems later, as team members start
making mistakes — some silly, some more serious — and eventually burn out.

With agile development, scrum teams help ensure that they do quality work by
creating an environment where members of the development team sustain a con-
stant working pace indefinitely. Working in sprints helps sustain a constant
working pace; when the development team chooses the work it can accomplish in
each sprint, it shouldn’t have to rush at the end.

The development team can determine what sustainable means for itself, whether
that means working a regular 40-hour workweek, a schedule with more or fewer
days or hours, or working outside a standard nine-to-five time frame.

If your fellow scrum team members start coming to work with their shirts on
inside out, you might want to double-check that you’re maintaining a sustainable
development environment.

Keeping the development team happy, rested, and able to have a life outside of
work can lead to fewer mistakes, more creativity and innovation, and better over-
all products.

Being proactive about quality saves you a lot of headaches in the long run. It is
much easier and more enjoyable to work on a product with fewer defects to fix.
The next section discusses an agile approach that addresses quality from both a
proactive and a reactive standpoint: inspect and adapt.

Quality through regular inspecting
and adapting
The agile tenet of inspect and adapt is a key to creating quality products. Through-
out agile development, you look at both your product and your process (inspect)

342 PART 4 Agility Management

and make changes as necessary (adapt). Chapters 9 and 12 have more information
about this tenet.

In the sprint review and sprint retrospective meetings, scrum teams regularly
step back and review their work and methods and determine how to make adjust-
ments for a better product. We provide details on the sprint review and sprint
retrospective in Chapter 12. Following is a quick overview of how these meetings
help ensure quality.

In a sprint review, scrum teams review requirements completed at the end of each
sprint. Sprint reviews address quality by letting stakeholders see working require-
ments and provide feedback on those requirements throughout the course of
development. If a requirement doesn’t meet stakeholder expectations, the stake-
holders tell the scrum team immediately. The scrum team can then adjust the
product in a future sprint. The scrum team can also apply its revised understand-
ing of how the product needs to work on other product requirements.

In a sprint retrospective, scrum teams meet to discuss what worked and what
might need adjusting at the end of each sprint. Sprint retrospectives help ensure
quality by allowing the scrum team to discuss and immediately fix problems.
Sprint retrospectives also allow the team to come together and formally discuss
changes to the product, the development process, or work environment that might
increase quality.

The sprint review and sprint retrospective aren’t the only opportunities for
inspecting and adapting for quality. Agile approaches encourage reviewing work
and adjusting behavior and methods throughout each workday. Daily inspecting
and adapting everything you do on the product help ensure quality.

Another way to manage and help assure quality is to use automated testing tools.
The next section explains why automated testing is important to agile software
development and how to incorporate automated testing into your product.

Automated testing
Automated testing is the use of software to test your product. If you want to
quickly create functionality that meets the definition of done — designed, devel-
oped, tested, integrated, and documented — you need a way to quickly test each
piece of functionality as it’s created. Automated testing means quick and robust
testing on a daily basis. Scrum teams continually increase the frequency with
which they automatically test their system so they can continually decrease the
time it takes them to complete and deploy new valuable functionality to their
customers.

CHAPTER 17 Managing Quality and Risk 343

Teams won’t become agile without automated testing. Manual testing simply
takes too long.

Throughout this book, we explain how scrum teams embrace low-tech solutions.
Why, then, is there a section in this book about automated testing, a rather high-
tech quality management technique? The answer to this question is efficiency.
Automated testing is like the spell-check feature in word-processing programs.
As a matter of fact, spell-checking is a form of automated testing. In the same
way, automated testing is a much quicker and often more accurate — thus, more
efficient — method of finding defects than manual testing.

To develop a product using automated testing, development teams develop and
test using the following steps:

1. While implementing user stories, write and execute automated tests in
support of user stories.

2. Whenever something is added, run automated tests as part of the
organization’s continuous integration and continuous deployment
pipeline.

3. Give feedback to developers immediately when tests fail, ensuring that
the errors are corrected immediately.

Automated testing allows development teams to have rapid create-test-fix cycles.
Also, automated testing software can often test requirements quicker and with
more accuracy and consistency than a person testing those requirements.

Today’s market has a lot of automated testing tools. Some automated testing tools
are open-source and free; others are available for purchase. The development team
needs to review automated testing options and choose the tool that will work best.

Automated testing changes the work for people in quality roles on the develop-
ment team. Traditionally, a large part of a quality management person’s work
involved manually testing products. The tester on a traditional project would use
the product and look for problems. With automated testing, however, quality
activities largely involve creating tests to run on automated testing software.
Automated testing tools augment, rather than replace, people’s skills, knowledge,
and work.

It is still a good idea to have humans periodically check that the requirements
you’re developing work correctly, especially when you first start using an auto-
mated testing tool. Any automated tool can have hiccups from time to time. By
manually double-checking (sometimes called smoke-testing) small parts of
automated tests, you help avoid getting to the end of a sprint and finding out that
your product doesn’t work like it should.

344 PART 4 Agility Management

You can automate almost any type of product test. If you’re new to product devel-
opment, you may not know that there are many different types of testing. A small
sample includes the following:

 » Unit testing: Tests individual units, or the smallest parts, of product code.

 » Regression testing: Tests an entire product from start to finish, including
requirements you have tested previously.

 » User acceptance testing: Product stakeholders or even some of the
product’s end users review a product and accept it as complete.

 » Functional testing: Tests to make sure the product works according to
acceptance criteria from the user story.

 » Integration testing: Tests to make sure the product works with other parts of
the product.

 » Enterprise testing: Tests to make sure the product works with other
products in the organization, as necessary.

 » Performance testing: Tests how a product performs given different
scenarios.

 » Load testing: Tests how well a product handles different amounts of
concurrent activity.

 » Security testing: Tests for product vulnerabilities, nefarious threats, and
weaknesses that can be exploited.

 » Smoke testing: Tests on small but critical parts to help determine if the
product as a whole is likely to work.

 » Static testing: Focuses on checking standards, rather than working product.

Automated testing works for these tests as well as many other types of product
tests.

As you may understand by now, quality is an integral part of agile product devel-
opment. Quality is just one factor, however, that differentiates risk with agile
product development from traditional projects. In the next sections, you see how
risk on traditional projects compares to risk with agile development.

CHAPTER 17 Managing Quality and Risk 345

What’s Different about Agile
Risk Management?

Risk refers to the factors that contribute to a project’s success or failure. With agile
product development, risk management doesn’t have to involve formal risk doc-
umentation and meetings. Instead, risk management is built into scrum roles,
artifacts, and events. In addition, consider the following agile principles that sup-
port risk management:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

7. Working software is the primary measure of progress.

The preceding principles, and any practice that demonstrates those principles,
significantly mitigate or eliminate many risks that frequently lead to project chal-
lenges and failure.

According to the Standish Group’s “2015 Chaos Report,” a study of 10,000 software
projects, small agile development efforts are 30 percent more likely to succeed
than traditional projects. See Figure 17-4. Medium-sized projects are four times
(400 percent) more likely to succeed with an agile approach than a traditional
approach, and large, complex projects are six times (600 percent) more likely to
succeed with an agile approach. In other words, the bigger the development effort,
the higher the chance of success using agile approaches.

Table 17-2 shows some of the differences between risk on traditional projects and
agile development.

With agile approaches, risk declines as development progresses. Figure 17-5
shows a comparison of risk and time between waterfall projects and agile product
development.

346 PART 4 Agility Management

FIGURE 17-4:
Standish Group’s

“2015 Chaos
Report.”

TABLE 17-2 Traditional versus Agile Risk
Risk Management with Traditional
Approaches Risk Dynamics with Agile Approaches

Large numbers of projects fail or are challenged. Risk of catastrophic failure — spending large amounts of
money with nothing to show — is almost eliminated.

The bigger, longer, and more complex the proj-
ect, the more risky it is. Risk is highest at the end
of a project.

Product value is gained immediately and incrementally
every sprint, rather than sinking costs into a product for
months or even years with the growing chance of failure.

Conducting all the testing at the end of a project
means that finding serious problems can put the
entire project at risk.

Testing occurs while you develop. If a technical
approach, a requirement, or even an entire product is
not feasible, the development team discovers this in a
short time, and you have more time to course correct. If
correction is not possible, stakeholders spend less
money on failed development.

Projects are unable to accommodate new
requirements mid-project without increased
time and cost because extensive sunk cost exists
in even the lowest-priority requirements.

Change for the benefit of the product is welcomed. Agile
techniques accommodate new high-priority require-
ments without increasing time or cost by removing a
low-priority requirement of equal time and cost.

CHAPTER 17 Managing Quality and Risk 347

All projects have some risk, regardless of your approach. However, with agile
product management, the days of catastrophic project failure — spending large
amounts of time and money with no return on investment (ROI) — are over. The
elimination of large-scale failure is the biggest difference between risk on tradi-
tional projects and agile product development. In the next section, you see why.

Risk Management with Traditional
Approaches Risk Dynamics with Agile Approaches

Traditional projects require precise time and
cost estimates at the project start, when teams
know the least about the project. Estimates are
often inaccurate, creating a gap between
expected and actual project schedules and
budgets.

Time and cost is estimated using the scrum team’s actual
performance, or velocity. You refine estimates through-
out development, because the longer you work, the
more you learn about the product, the requirements,
and the scrum team.

When stakeholders don’t have a unified goal,
they can end up confusing the project team with
conflicting information about what the product
should achieve.

A single product owner is responsible for creating a
vision for the product and represents the stakeholders
to the team.

Unresponsive or absent stakeholders can cause
project delays and result in products that do not
achieve the right goals.

The product owner is responsible for providing informa-
tion about the product immediately. In addition, the
scrum master helps remove impediments on a daily
basis.

FIGURE 17-5:
Agile product

development’s
declining risk

model.

348 PART 4 Agility Management

Managing Agile Risk
In this section, you examine key structures of agile development that reduce risk
over the life of the product. You find out how to use agile tools and events to find
risks at the right time and how to prioritize and mitigate those risks.

Reducing risk inherently
Agile approaches, when implemented correctly, inherently reduce risk in product
development. Developing in sprints ensures a short time between product invest-
ment and proof that the product works. Sprints also provide the potential for a
product to generate revenue early. The sprint review, the sprint retrospective, and
the product owner’s involvement during each sprint provide constant product
feedback to the development team. Ongoing feedback helps prevent deviations
between product expectations and the completed product.

Three especially important factors in risk reduction with agile development are
the definition of done, self-funding, and the idea of failing fast. You find out more
about each of these factors in this section.

Risk and the definition of done
In Chapter 12, we discuss when a requirement is done. To consider a requirement
complete and ready to demonstrate at the end of a sprint, that requirement must
meet the scrum team’s definition of done. The product owner and the develop-
ment team agree upon the details of the definition; definitions of done usually
include the following categories:

 » Developed: The development team must fully create the working product
requirement in an environment that reflects the one where the customer
will use it.

 » Tested: The development team must have tested that the product works
correctly and is defect-free.

 » Integrated: The development team must have ensured that the requirement
works with the whole product and any related systems.

 » Documented: The development team must have created notes about how it
created the product and the rationale behind key technical decisions made.

Figure 17-6 shows a sample definition of done, with details.

CHAPTER 17 Managing Quality and Risk 349

The product owner and the development team may also create a list of acceptable
risks. For example, they may agree that end-to-end regression testing or perfor-
mance testing is overkill for the sprint definition of done. Or, with cloud comput-
ing, load testing may not be as crucial because additional capacity can be easily
and quickly added on demand at nominal costs. Acceptable risks allow the devel-
opment team to concentrate on the most important activities.

The definition of done drastically changes the risk factor with agile approaches.
By creating a product that meets the definition of done in every sprint, you end
each sprint with a working, usable, and shippable product increment. Even if out-
side factors cause development to end early, stakeholders will always see some
value and have working functionality to use now and build upon later.

Self-funding development
Agile development efforts can mitigate financial risk in a unique way that tradi-
tional projects cannot: self-funding development. Chapter 15 includes examples
of self-funding development. If your product is an income-generating product,
you could use that income to help fund the rest of your product.

In Chapter 15, we show you two different ROI models. Here they are again, in
Tables 17-3 and 17-4. The development efforts in both tables create identical
products.

In Table 17-3, the product created $100,000 in income after six months of devel-
opment. Now compare the ROI in Table 17-3 to the ROI in Table 17-4.

FIGURE 17-6:
Sample definition

of done.

350 PART 4 Agility Management

In Table 17-4, the product generated income with the very first release. By the end
of six months, the product had generated $330,000 — $230,000 more than the
project in Table 17-3.

The capability to generate income in a short amount of time has a number of ben-
efits for companies and teams. Self-funding agile development make good finan-
cial sense for almost any organization, but they can be especially useful to
organizations that may not have the funds to create a product up front. For groups
short on cash, self-funding can enable product features that would otherwise not
be feasible.

TABLE 17-3 Income from a Traditional Project with a Final Release
after Six Months

Month Income Generated Total Project Income

January $0 $0

February $0 $0

March $0 $0

April $0 $0

May $0 $0

June $0 $0

July $100,000 $100,000

TABLE 17-4 Income from Agile Development with Monthly Releases
and a Final Release after Six Months

Month/Release Income Generated Total Income

January $0 $0

February $15,000 $15,000

March $25,000 $40,000

April $40,000 $80,000

May $70,000 $150,000

June $80,000 $230,000

July $100,000 $330,000

CHAPTER 17 Managing Quality and Risk 351

Self-funding also helps mitigate the risk that development will be cancelled due
to lack of funds. A company emergency may dictate diverting a traditional proj-
ect’s budget elsewhere, delaying or cancelling the project—with nothing tangible
to show for the time spent to that point. However, agile product development that
generates additional revenue with every release has a good chance of continuing
during a crisis.

Finally, self-funding helps sell stakeholders in the first place; it’s hard to argue
with a product that provides continuous value and pays for at least part of the
product costs from the start.

Failing fast
All product development efforts carry some risk of failure. Testing within sprints
introduces the idea of failing fast: Instead of sinking costs into a long effort for
requirements, design, and development, and then finding problems that will pre-
vent the product from moving forward during the testing phase, development
teams identify critical problems within a few sprints. This quantitative risk miti-
gation can save organizations large amounts of money.

Tables 17-5 and 17-6 illustrate the difference in sunk costs for a failed waterfall
project and a failed agile development effort. Both tables are for identical products
with identical costs.

In Table 17-5, the stakeholders spent 11 months and close to a million dollars to
find out that a product idea would not work. Compare the sunk cost in Table 17-5
to that in Table 17-6.

By testing early (daily during each two-week sprint), the development team from
Table 17-6 determined that the product would not work by the end of February,
spending less than one-sixth of the time and money spent in the project in
Table 17-5.

Because of the definition of done, product development that fails early still leaves
you with something tangible that you may leverage or improve. For example, the
failed development effort in Table 17-5 would have provided working functional-
ity in the first two sprints.

The concept of failing fast can apply beyond technical problems with a product. You
can also use development within sprints and fast failure to see if a product will
work in the marketplace, and to end the product development early if it looks like
customers won’t buy or use the product. By releasing small parts of the product
and testing the product with potential customers early in development, you get a
good idea of whether your product is commercially viable, and save large amounts
of money if you find that people will not buy the product. You also discover impor-
tant changes you might make to the product to better meet customer needs.

352 PART 4 Agility Management

Finally, failing fast does not necessarily mean cancellation. If you find cata-
strophic issues when sunk costs are low, you may have the time and budget to
determine a completely different approach to create a product.

TABLE 17-6 Cost of Failure with Agile Techniques
Month Sprint and Issues Sunk Cost Total Sunk Cost

January Sprint 1: No issues.

Sprint 2: No issues.

$80,000 $80,000

February Sprint 3: Large-scale problem uncovered during testing
resulted in failed sprint.

Sprint 4: Development team attempted to resolve problem
to continue development; sprint ultimately failed.

$80,000 $160,000

Final Development cancelled; product not viable. 0 $160,000

TABLE 17-5 Cost of Failure on a Waterfall Project

Month Phase and Issues
Sunk
Project Cost

Total Sunk
Project Cost

January Requirements phase $80,000 $80,000

February Requirements phase $80,000 $160,000

March Requirements phase $80,000 $240,000

April Requirements phase $80,000 $320,000

May Design phase $80,000 $400,000

June Design phase $80,000 $480,000

July Development phase $80,000 $560,000

August Development phase $80,000 $640,000

September Development phase $80,000 $720,000

October QA phase: Large-scale problem uncovered
during testing.

$80,000 $800,000

November QA phase: Development team attempted to
resolve problem to continue development.

$80,000 $880,000

December Project cancelled; product not viable. 0 $880,000

CHAPTER 17 Managing Quality and Risk 353

The definition of done, self-funding development, and the idea of failing fast,
along with the foundation of agile principles, all help lower risk. In the next sec-
tion, you see how to actively use agile tools to manage risk.

Identifying, prioritizing, and
responding to risks early
Although the structure of agile product development inherently reduces many
traditional risks, development teams still should be aware of the problems that
can arise during development. Scrum teams are self-managing; in the same way
that they are responsible for quality, scrum teams are responsible for trying to
identify risks and ways to prevent those risks from materializing.

Scrum teams prioritize the highest-value and highest-risk requirements first.

Instead of spending hours or days documenting all of the potential risks, the like-
lihood of those risks happening, the severity of those risks, and ways to mitigate
those risks, scrum teams use existing agile artifacts and meetings to manage risk.
Scrum teams also wait until the last responsible minute to address risk, when they
know the most about the product and problems that are more likely to arise.
Table 17-7 shows how scrum teams can use the different agile tools to manage
risk at the right time.

TABLE 17-7 Agile Risk Management Tools
Artifact or Meeting Role in Risk Management

Product vision The product vision statement helps unify the team’s definition of product goals,
mitigating the risk of misunderstandings about what the product will need to
accomplish.

While creating the product vision, the team might think of risks on a very high
level, based on marketplace and customer feedback, and inline with organizational
strategy. Find out more about the product vision in Chapter 9.

Product roadmap The product roadmap provides a visual overview of the product’s requirements
and priorities. This overview allows the team to quickly identify gaps in require-
ments and incorrectly prioritized requirements. Find out more about the product
roadmap in Chapter 9.

Product backlog The product backlog is a tool for accommodating change in the product. Being
able to add changes to the product backlog and reprioritize requirements regu-
larly helps turn the traditional risk associated with scope changes into a way to
create a better product.

Keeping the requirements and the priorities in the product backlog current helps
ensure that the development team can work on the most important requirements
at the right time. Find out more about the product backlog in Chapters 9 and 10.

(continued)

354 PART 4 Agility Management

The artifacts and meetings discussed in this section systematically help scrum
teams manage risk with agile development by addressing risk by the responsible
roles at appropriate times. The larger and more complex the product, the higher
the likelihood that an agile approach can eliminate the risk of failure.

Artifact or Meeting Role in Risk Management

Release planning During release planning, the scrum team discusses risks to the release and how to
mitigate those risks. Risk discussions in the release planning meeting should be
high-level and relate to the release as a whole. Address risks with individual
requirements in the sprint planning meetings. Find out more about release plan-
ning in Chapter 10.

Sprint planning During each sprint-planning meeting, the scrum team discusses risks to the spe-
cific requirements and tasks in the sprint and how to mitigate those risks. Risk dis-
cussions during sprint planning can be done in depth, but should only relate to the
current sprint. Find out more about sprint planning in Chapter 10.

Sprint backlog The burndown chart on the sprint backlog provides a quick view of the sprint sta-
tus. This quick view helps the scrum team manage risks to the sprint as they arise
and minimize their effect by addressing problems immediately. Find out more
about sprint backlogs and how burndown charts show status in Chapter 11.

Daily scrum During each daily scrum, development team members discuss roadblocks. Road-
blocks, or impediments, are sometimes risks. Talking about roadblocks every day
gives the development team and the scrum master the chance to mitigate those
risks immediately. Find out more about the daily scrum in Chapter 11.

Task board The task board provides an unavoidable view of the sprint status, allowing the
scrum team to catch risks to the sprint and manage them right away.

Find out more about task boards in Chapter 11.

Sprint review During the sprint review, the scrum team regularly ensures that the product meets
stakeholders’ expectations. The sprint review also provides opportunities for
stakeholders to discuss changes to the product to accommodate changing busi-
ness needs. Both aspects of the sprint review help manage the risk of getting to
the end of development with the wrong product. Find out more about sprint
reviews in Chapter 12.

Sprint retrospective During the sprint retrospective, the scrum team discusses issues with the past
sprint and identifies which of those issues may be risks in future sprints. The
development team needs to determine ways to prevent those risks from becom-
ing problems again. Find out more about sprint retrospectives in Chapter 12.

TABLE 17-7 (continued)

5Ensuring Success

IN THIS PART . . .

Build a foundation through organizational and individual
commitment to becoming more agile.

Choose your first agile product development
opportunity and create an environment that will
optimize agile transition success.

Simplify agile techniques across multi-team product
development, enabling alignment and autonomy.

Become a change agent in your organization and help
avoid both organizational and leadership pitfalls in agile
transitions.

CHAPTER 18 Building a Foundation 357

Chapter 18
Building a Foundation

To successfully move from traditional project management to agile pro-
cesses, you must start with a good foundation. You need commitment, both
from your organization and from people as individuals, and you need to find

a good team for your first pilot of agile techniques, providing the team an envi-
ronment conducive to agile approaches. You want to find the right training for
your team, and sustainably support your organization’s agile approach so that it
can grow beyond your first development effort.

In this chapter, we show you how to build a strong agile foundation within your
organization.

Organizational and Individual
Commitment

Commitment to agile product development means making an active, conscious
effort to work with new methods and to abandon old habits. Commitment at both
an individual level and at an organizational level is critical to agile transition
success.

IN THIS CHAPTER

 » Obtaining organizational and
individual commitment

 » Assembling teams with the necessary
skills and abilities

 » Establishing an appropriate
environment

 » Investing in training

 » Securing initial and ongoing
organizational support

358 PART 5 Ensuring Success

Without organizational support, even the most enthusiastic scrum team members
may find themselves forced back into old project management processes. Without
the commitment of individual team members, a company that embraces agile
approaches may encounter too much resistance, or even sabotage, to be able to
become an agile organization.

The following sections provide details on how organizations and people can sup-
port an agile transition.

Organizational commitment
Organizational commitment plays a large role in agile transition. When a com-
pany and the groups in that company embrace agile principles, the transition can
be easier for the team members.

Organizations can commit to an agile transition by doing the following:

 » Training leaders in skills specific to leading the transformation internally

 » Engaging an experienced agile expert to create a realistic transition plan
based on the current state and to guide the company through that plan

 » Investing in employee training, starting with the members of the company’s
first scrum team and the leadership at all levels who support them

 » Allowing scrum teams to abandon waterfall processes, meetings, and
documents in favor of streamlined agile approaches

 » Ensuring all scrum team members necessary are dedicated: An empowered
product owner, a cross-functional development team of multi-skilled people,
and an influential servant-leader scrum master

 » Enabling development teams to continuously increase their skill sets

 » Providing automated testing tools and a continuous integration framework

 » Logistically supporting scrum team collocation for effective and real-time
collaboration

 » Ensuring that distributed teams are organized in similar time zones and
making an investment in appropriate virtual tools and training when rare
circumstances prevent physical collocation, such as the COVID-19 pandemic

 » Allowing scrum teams to manage themselves

 » Empowering product owners to make business prioritization decisions,
development teams to own technical excellence decisions, and scrum masters
to challenge the status quo by breaking down organizational constraints to
agility

CHAPTER 18 Building a Foundation 359

 » Encouraging learning by giving scrum teams the time and freedom to go
through a healthy trial-and-error process

 » Revising employee performance reviews to emphasize team performance

 » Encouraging scrum teams and celebrating successes

Organizational support is also important beyond the agile transition. Companies
can ensure that agile processes continue to work by hiring with scrum teams in
mind and by providing agile training to new employees. Organizations can also
engage the ongoing support of an agile mentor, who can guide teams as they
encounter new and challenging situations.

Organizations, of course, are made up of individuals. Organizational commitment
and individual commitment go hand in hand.

Individual commitment
Individual commitment has an equal role to organizational commitment in agile
transitions. When each person on a scrum team works at adopting agile practices,
the changes become easier for everyone on the team.

People can individually commit to an agile transition by using these methods:

 » Attending training and conferences and being willing to learn about
agile methods

 » Being open to change, willing to try new processes, and making an effort to
adapt new habits

 » Letting go of ego and working as part of a team, especially across traditional
hierarchal and departmental boundaries

 » Resisting the temptation to fall back on old processes

 » Acting as a peer coach for team members who are less experienced in agile
techniques

 » Allowing themselves to make mistakes and learn from those mistakes

 » Reflecting on each sprint honestly in the sprint retrospective and committing
to improvement efforts

 » Actively becoming multi-skilled development team members

 » Taking responsibility for successes and failures as a team

 » Taking the initiative to be self-managing

 » Being active and present throughout

360 PART 5 Ensuring Success

Like organizational commitment, individual commitment is important beyond
the agile transition period. The people on the first pilot will become a reference
model as well as change agents throughout the company, setting the stage and
exemplifying for other teams how to effectively work with agile methods.

Getting commitment
Commitment to agile methods may not be instant. You’ll need to help people in
your organization overcome the natural impulse to resist change.

A good early step in an agile transition is to find an agile champion, a senior-level
manager or executive who can help ensure organizational change. The fundamen-
tal process changes that accompany agile transitions require support from the
people who make and enforce business decisions. A good agile champion will be
able to rally the organization and its people around process, structure, and mind-
set changes.

Another important way to get commitment is to identify challenges with the
organization’s current development practices and provide potential solutions
with agile approaches. Agile values, principles, and frameworks (such as scrum)
can help address many problems, including issues with product quality, customer
satisfaction, team morale, budget and schedule overruns, funding, portfolio man-
agement, and overall product issues.

Finally, highlight benefits of agile approaches to product development. Some of
the real and tangible benefits that drive shifts from traditional methods of project
management to agile methods include the following:

 » Happier customers: Agile approaches often have higher customer satisfac-
tion because scrum teams produce working products quickly, can respond to
change, and collaborate with customers as partners.

 » Profit benefits: Agile approaches allow teams to deliver functionality to
market quicker than with traditional approaches. Agile organizations can
realize higher return on investment, often resulting in self-funded teams.

 » Defect reduction: Quality is a key part of agile approaches. Proactive quality
measures, continuous integration and testing, and continuous improvement
all contribute to higher-quality products.

 » Improved morale: Agile practices, such as sustainable development and
self-managing development teams, can mean happier employees, improved
efficiency, and less company turnover.

You can find more benefits of agile product development in Chapter 21.

CHAPTER 18 Building a Foundation 361

Can you make the transition?
You’ve established many valuable reasons for moving to an agile approach, and
your case looks good. But will your organization be able to make the transition?
Here are some key questions to consider:

 » What are the organizational roadblocks? Does your organization have a
value-delivery culture or a risk-management culture? Does it support coaching
and mentorship alongside management? Is there support for training? How
does the organization define success? Does it have an open culture that will
embrace a high visibility of product progress?

 » How are you doing business today? How is product development planned
at the macro level? Is the organization fixated on fixed scope? How engaged
are business representatives? Do you outsource development?

 » How do your teams work today, and what will need to shift under
agile methods? How ingrained is waterfall? Does the team have a strong
command-and-control mentality? Can good ideas come from anywhere?
Is early learning from failure accepted? Is there trust in the team? Are people
shared across teams? What do you need to ask for to secure a shift? Can you
get people, tools, space, and commitment to pilot the change?

 » What are the regulatory challenges? Are there processes and procedures
that relate to regulatory requirements? Are these requirements imposed
upon you from externally or internally adopted regulations and standards?
Will you need to create additional documentation to satisfy regulatory
requirements? Are you likely to be audited for compliance, and what
would be the cost of noncompliance?

As you review your analysis of the roadblocks and challenges, you may uncover
the following concerns:

 » Agile approaches reveal that the organization needs to change. As you
compare agile practices and results with what you have done traditionally, you
may reveal that performance has not been all it could have been. You need to
tackle this head on. Your organization has been operating within a framework
of how product development was expected to be run. Your organization has
done its best to produce a result, often in the face of extreme challenges. For
all parties involved, you have to acknowledge their efforts and introduce the
potential of agile processes to allow them to produce yet greater results.

 » Leaders may misinterpret agile techniques as insufficient. Often the
values and principles of the Agile Manifesto are misinterpreted to mean agile
frameworks involve insufficient planning and documentation and attempt to
disregard generally accepted project management standards. Experienced

362 PART 5 Ensuring Success

project managers may view some of that value slipping away in a transition to
agile processes. Take every opportunity to clarify what agile values and
principles support and do not support. Show how each principle addresses
the same challenges that traditional project management attempts to resolve
but in a different way.

 » Negative previous experience with attempted agile transformation.
Employees may have had a previous experience of a failed agile transforma-
tion and are turned off by the idea of trying it again. This situation can be an
opportunity to return to agile values and principles. Proper training, an
experienced agile mentor, and a focus on agile fundamentals are essential for
transformation success.

 » Moving from a leadership to a service model can be challenging. Agile
leaders are service oriented. Command and control gives way to facilitation.
Servant leadership is a big shift for many teams and functional managers.
Demonstrate how the shift provides more effective outcomes for everyone.
You can read more about servant leadership in Chapter 16.

Keep in mind that some resistance will arise; change can’t happen without oppo-
sition. Be ready for resistance, but don’t let it discourage you.

Timing the transition
Organizationally, you can start your initiative to move to an agile approach at any
time. You might consider a few optimal times:

 » When you need to prove that agile product development is necessary:
Use the end of a large project, when you can see clearly what did not work (for
example, during a sunset review). You’ll be able to demonstrate clearly the
issues with whatever failed in your approach, and you’ll gain a springboard for
your first agile pilot.

 » When your challenge is doing accurate budgeting: Run your first agile
development effort in the quarter before the start of the annual budget year
(namely, one quarter before the end of the current budget cycle). You’ll get
metrics from your first development effort that will allow you to be more
informed when planning next year’s budget.

 » When you’re starting a new product development effort: Moving to agile
processes when you have a new objective to accomplish lets you start fresh
without the baggage of old approaches.

CHAPTER 18 Building a Foundation 363

 » When you’re trying to reach a new market or industry: Agile techniques
allow you to deliver quick innovation to help your organization create
products for new types of customers.

 » When you have new leadership: Management changes are great opportuni-
ties for setting new expectations with agile approaches.

Although you can take advantage of any of these opportunities to start using agile
processes, they’re not required. The best time to become more agile is . . . today!

Choosing the Right Pilot Team Members
Determining the right people to work with, especially in the early stages, is impor-
tant to success. Here are things to think about when choosing people for the dif-
ferent roles in your organization’s first agile pilot.

The agile champion
At the beginning of an agile transition, the agile champion will be a key person in
helping ensure that the team can succeed. This person should be able to effectively
and quickly influence each level of the organization that affects the pilot teams’
chances for success. A good agile champion should be able to do all these tasks:

 » Be passionate about agility and the organizational and market issues agile
approaches will address.

 » Make decisions about company processes. If there is a status quo, the agile
champion should be able to influence a change.

 » Get the organization excited about what’s possible with agile processes.

 » Regularly and directly collaborate with and support the team as it goes
through the steps to establish agile processes.

 » Acquire the team members necessary for success, both for the first pilot as
well as for all teams in the long term.

 » Be an escalation point to remove unnecessary distractions and non-agile
processes.

When choosing an agile champion, look for someone who has influence in the
organization — whose voice is respected and who has led change initiatives suc-
cessfully in the past.

364 PART 5 Ensuring Success

The agile transition team
As important as the agile champion is, one person can’t do everything. The agile
champion should work together with other organizational leaders whom the
scrum team relies on for support in the transition. Together, the agile transition
team removes organizational impediments to ensure the success of the pilot team
and future scrum teams.

Although the agile transition team addresses organizational impediments in sup-
port of pilot teams, it makes changes to optimize not just a few local teams but the
entire organizational system. This process is called systems thinking. The issues
raised by the one pilot team inform the agile transition team of system-wide
issues, and the transition team addresses those issues in ways that will benefit the
entire organization.

The agile transition team should

 » Be committed to organizational success through the continuous support of
pilot teams.

 » Establish a clear vision and roadmap for how the organization will become
more agile.

 » Be organized like a scrum team, with a product owner (agile champion),
development team (leaders who can make organizational changes in support
of the pilot scrum teams), and a scrum master (an organizational leader who
can focus on helping the agile transition team adopt agile principles and coach
the rules of scrum).

 » Operate as a scrum team, holding all five scrum events and implementing all
three scrum artifacts.

Figure 18-1 illustrates how the agile transition team’s and pilot scrum team’s
sprint cadences are aligned. Impediments identified in the sprint retrospective of
the pilot team become backlog items for the transition team to resolve as process
improvements for the pilot team.

Not only does the agile transition team provide systematic support for the pilot
scrum team, but the organizational leadership also becomes more agile by using
scrum alongside the pilot team.

CHAPTER 18 Building a Foundation 365

The product owner
With an agile champion and an agile transition team in place, the focus turns to
pilot scrum teams. The pilot scrum team product owners should come from the
business side of the organization, aligning the business with technology. During
the first agile development effort, the product owner may need to acclimate to
working on the product daily with the development team. A good product owner
should

 » Be decisive.

 » Be an expert about customer requirements and business needs.

 » Have the business authority and be empowered to prioritize and reprioritize
product requirements.

 » Be organized enough to manage ongoing changes to the product backlog.

 » Be committed to working with the rest of the scrum team and to being
available to the development team daily throughout development.

 » Have the ability to obtain product funding and other resources.

FIGURE 18-1:
Alignment of the

agile transition
team and the

pilot scrum team
cadences.

366 PART 5 Ensuring Success

When choosing a product owner for your first agile pilot, find someone who can
provide product expertise and commitment to the product. See Chapter 7 for more
information about the product owner role.

The development team
With agile product development, the self-managing development team is central
to the success of the product. The development team determines how to go about
the work of accomplishing the product goals. Good development team members
should be able to do the following:

 » Be versatile in skills.

 » Be willing to work cross-functionally.

 » Plan a sprint and self-manage around that plan.

 » Understand the product requirements and provide effort estimates.

 » Provide technical advice to the product owner so that he or she can under-
stand the complexity of the requirements and make appropriate decisions.

 » Respond to circumstances and adjust processes, standards, and tools to
optimize performance.

Intellectually curious developers, eager to learn new things and contribute to
product goals in a variety of ways, are more likely to thrive in an agile environ-
ment. When choosing a development team for the pilot, select people who are
open to change, enjoy a challenge, like to be in the forefront of new developments,
and are willing to do whatever it will take to ensure success, including learning
and using new skills outside their existing skill set. To learn more about the devel-
opment team role, see Chapter 7.

The scrum master
The scrum master on a company’s first agile product development effort may
need to be more sensitive to potential development team distractions than on later
efforts. A good scrum master should

 » Have influence (clout).

 » Have enough organizational influence to remove outside distractions that
prevent the team from successfully using agile methods.

 » Know enough about agile product development to be able to help the team
uphold agile processes throughout development.

CHAPTER 18 Building a Foundation 367

 » Have the communication and facilitation skills to guide the development team
in reaching consensus.

 » Trust enough to step back and allow the development team to organize and
manage itself.

When determining the scrum master for a company’s first team, you want to select
someone who is willing to be a servant-leader. At the same time, the scrum master
will need to have a strong enough temperament to help thwart distractions, chal-
lenge the status quo, and uphold agile processes in the face of organizational and
individual resistance. See Chapter 7 for details on the scrum master role.

The stakeholders
On an organization’s first agile pilot, good stakeholders should

 » Be involved.

 » Defer to the product owner for final product decisions.

 » Attend sprint reviews and provide product feedback.

 » Understand agile principles. Sending stakeholders to the same training as the
rest of the team will help them be more comfortable with new approaches,
processes, and techniques.

 » Receive product information in agile formats, such as sprint reviews, product
backlogs, and sprint backlogs.

 » Provide details when the product owner and development team have questions.

 » Work collaboratively with the product owner and the rest of the team.

The stakeholders should be trustworthy, cooperative, and active contributors to a
product.

The agile mentor
An agile mentor, sometimes called an agile coach, is key to keeping teams and
organizations on track while learning scrum and beginning to establish a more
agile environment. A good agile mentor should

 » Be experienced (diversity in industry, business function, and role experience)

 » Be an expert at agile processes, especially in the agile approaches your
organization chooses.

368 PART 5 Ensuring Success

 » Be familiar with development efforts of different sizes, large and small.

 » Help teams self-manage, ask questions to help them learn for themselves,
and provide useful advice and support without taking over.

 » Guide the team through its first sprint at the beginning and be available to
answer questions as needed throughout development.

 » Work with and relate to the product owner, the development team members,
and the scrum master.

 » Be a person from outside a department or organization. Internal agile
mentors often come from a company’s traditional project management group
or center of excellence. If the agile mentor comes from inside the organiza-
tion, he or she should be able to put aside political considerations when
making suggestions and providing advice.

A number of organizations offer agile strategy, planning, and mentorship, includ-
ing our company, Platinum Edge.

Creating an Environment
That Enables Agility

When you’re laying the foundation for adjusting your approach from traditional
methods to agile methods, create an environment where agile product develop-
ment can be successful and teams can thrive. An agile environment refers to not
only physical environments, such as the one we describe in Chapter 6, but also a
good organizational environment. To create a good agile environment, you should
have the following:

 » Good use of agile processes: This may seem obvious, but using proven agile
frameworks and techniques from the beginning. Use the Roadmap to Value
in Figure 18-2, using scrum and the other key agile practices to increase your
chances of success. Start with the basics; build on them only when the product
and your knowledge progress. Changing processes for the sake of perceived
progress doesn’t lead to perfection. Remember, practice doesn’t make perfect;
practice makes permanent. Start out correctly.

 » Unfettered transparency: Be open about development status and upcoming
process changes. People on the team and throughout the organization should
be privy to product development details.

CHAPTER 18 Building a Foundation 369

 » Frequent inspection: Use the regular feedback loop opportunities that
scrum provides to see firsthand how development is going.

 » Immediate adaptation: Follow up on inspection by making necessary
changes for improvement throughout development. Take opportunities to
improve today; don’t wait until the end of a release or end of development.

 » A dedicated scrum team: The product owner, development team, and scrum
master should be fully allocated to the development effort.

 » A collocated scrum team: For best results, the product owner, development
team, and scrum master should sit together, in the same area of the same
office. Although collocation is preferred, consider equipment and training to
make a virtual environment effective when collocation is not possible (as was
the case during the COVID-19 pandemic, as discussed in Chapter 6).

 » A well-trained product team: When the members of the team work together
to learn about agile values and principles and experiment with agile tech-
niques, they have shared understanding and common expectations about
where they’re headed as an agile organization.

FIGURE 18-2:
The Roadmap to

Value.

370 PART 5 Ensuring Success

Luckily, many opportunities for training in agile processes are available. You can
find formal certification programs as well as non-certification agile courses and
workshops. Available agile certifications include the following:

 » From the Scrum Alliance:

• Certified ScrumMaster (CSM)

• Advanced Certified ScrumMaster (A-CSM)

• Certified Scrum Product Owner (CSPO)

• Advanced Certified Scrum Product Owner (A-CSPO)

• Certified Scrum Developer (CSD)

• Certified Scrum Professional (CSP) for ScrumMasters (CSP-SM), Product
Owners (CSP-PO), and Developers (CSP)

• Certified Team Coach (CTC)

• Certified Enterprise Coach (CEC)

• Certified Scrum Trainer (CST)

• Certified Agile Leadership (CAL)

 » From Scrum.org:

• Professional Scrum Master (PSM I, II, III)

• Professional Scrum Product Owner (PSPO I, II, III)

• Professional Scrum Developer (PSD I)

• Professional Agile Leadership (PAL I)

 » From the International Consortium for Agile (ICAgile): Various professional and
expert tracks in agile facilitation, coaching, engineering, training, business agility,
delivery management, DevOps, enterprise, agility, and value management

 » From Kanban University

• Team Kanban Practitioner (TKP)

• Kanban Management Professional (KMP I, II)

• Kanban Coaching Professional (KCP)

• Accredited Kanban Consultant (AKC) and Trainer (AKT)

CHAPTER 18 Building a Foundation 371

 » The Project Management Institute Agile Certified Practitioner (PMI-ACP)
accreditation

 » Numerous university certificate programs

With a good environment, you have a good chance at success.

Support Agility Initially and Over Time
When you first launch into agile processes, give your agile transition every chance
for success by paying attention to key success factors:

 » Choose a good pilot. Select a pilot that’s important enough to get everyone’s
support. At the same time, set expectations: Although the pilot will produce
measurable improvements, the results will be modest while the team is
learning new methods and will improve over time.

 » Get an agile mentor. Use a mentor or coach to increase your chances of
setting up a good agile environment and maximizing your chances of great
performance.

 » Communicate — a lot. Keep talking about agile principles at every level of
the organization. Support your agile champion to encourage progress through
the pilot and toward more extensive agile adaptation.

 » Prepare to move forward. Keep thinking ahead. Consider how you’ll take the
lessons from the pilot to new development efforts and teams. Also think
about how you’ll enable agile principles and techniques from a single product
to many products, including those with multiple teams.

CHAPTER 19 De-Scaling across Teams 373

Chapter 19
De-Scaling across Teams

Depending on the schedule, scope, and required skills, many small and
medium-sized product development efforts can be accomplished with a
single scrum team. Larger efforts, however, may require more than one

scrum team to achieve the product vision and release goals in a reasonable go-
to-market time frame. When more than one scrum team is required, the teams
need effective inter-team collaboration, communication, and synchronization.
Regardless of the development effort’s size, if interdependencies exist between
multiple teams working together on the same product, or even across a collection
of products, you may need to scale. Be aware, however, that scaling is an
 anti-pattern to agility.

With agile techniques, you decompose requirements into the most simple, inde-
pendent channels of value, which enables the team to deliver working product
early and continuously. Scaling is the opposite of decomposition, introducing
dependencies. Rather than introducing overhead to deal with these dependencies,
the goal is to simplify the breaking down of dependencies.

Scale only if you have to. Even though you may have the talent and resources
available to enable multiple teams work on your product, multiple teams don’t
automatically ensure higher quality and faster time to market. Always look for
ways to implement the tenth agile principle, “Simplicity — the art of maximizing
the amount of work not done — is essential.” Less is more.

IN THIS CHAPTER

 » Identifying when and why to scale
across multiple teams

 » Understanding the basics of scaling

 » Exploring scaling challenges

374 PART 5 Ensuring Success

As an agile framework, scrum helps teams organize their work and expose prog-
ress effectively, whether your product comprises one scrum team or one thousand
scrum teams. Scaling brings new challenges, however, so you want to implement
techniques for coordination and collaboration across teams that not only support
agile values and principles, but also address the specific challenges facing your
product and organization.

In this chapter, we discuss some of the issues to address when you need multiple
teams for your product development effort. We also provide overviews of some
common agile scaling frameworks and approaches that address the challenges of
scaling.

Multi-Team Agile Development
Organizations determine the need for multiple scrum teams when the product
backlog and release plan require a faster speed of development than a single scrum
team can achieve.

With agile product development, cross-functional teams work together during
every sprint, doing the same types of work each sprint and implementing require-
ments from the product backlog into completed, working, shippable functionality.
When multiple teams work from the same product backlog, however, you have
new challenges to address.

Common challenges with more than one scrum team working on the same prod-
uct include the following:

 » Product planning: Agile planning is collaborative, from the beginning.
Collaboration for large groups is different than for single scrum teams.
Establishing a vision with the broader team (all scrum teams and stakehold-
ers) and building a product roadmap with collaborative input from all parties
involved requires a different approach than with a single-team product.

 » Release planning: Similar to the challenge of product planning, releases
involve more specific planning of scope and release timing. Coordinating who
will work on what and who will need help from whom throughout the release
cycle is even more critical to ensure that dependencies, scope gaps, and talent
allocation match the needs across the product.

 » Decomposition: To break down larger requirements in the same product
backlog, multiple teams may need to be involved in research and refinement
discussions and activities. Who initiates these discussions? Who facilitates?

CHAPTER 19 De-Scaling across Teams 375

 » Sprint planning: Although not the last opportunity to coordinate planning
and execution between scrum teams, sprint planning is when scrum teams
lock in a certain amount of scope from the product backlog to execute. At this
stage, dependencies between scrum teams become reality. If the preceding
activities of developing the product roadmap and release plan have not
exposed dependencies, how can the scrum teams expose and address them
at sprint planning?

 » Daily coordination: Even after effective planning and collaboration from
initiation through sprint planning, scrum teams can and should collaborate
each day. Who participates and what can be done while teams are in execu-
tion mode?

 » Sprint review: With so many teams demonstrating their product increments
and seeking feedback, how can stakeholders participate with their limited
schedules? How can product owners update the product backlog with all that
was learned across multiple scrum teams? How do development teams know
what was accomplished by other development teams?

 » Sprint retrospective: Multiple scrum teams working together make up a
broader product team. How do they identify opportunities for improvement
and implement those improvements across the program?

 » Integration: All product increments need to work together in an integrated
environment. Who does the integration? Who provides the infrastructure to
the teams? Who ensures the integrations work?

 » Architecture decisions: Who oversees the architecture and technical
standards? How can these decisions be decentralized to enable teams to be
self-organizing and work as autonomously as possible?

These are some examples; you might be able to identify others based on your
experience. Whatever your situation, select solutions to your scaling challenges
that address your specific challenge.

Some scaling frameworks offer solutions to challenges you may not have. Be care-
ful not to bloat your framework fixing things that are not broken.

Since the first scrum teams in the mid-1990s, there have been agile products
requiring multiple scrum teams collaborating effectively. Following are overviews
of various scaling frameworks and techniques addressing many of these
challenges.

376 PART 5 Ensuring Success

Making Work Digestible through
Vertical Slicing

One of the simplest scaling approaches is known as vertical slicing, which pro-
vides a straightforward solution for dividing the work across teams so they can
incrementally deliver and integrate functionality at every sprint. If your scaling
challenge is breaking down the work across teams, vertical slicing is a solution.

The concept of vertical slicing applies to single team product development efforts,
too. Development teams consist of people who collectively possess all skills
required to turn a requirement into completed, shippable functionality. The devel-
opment team swarms on one requirement at a time, which is a vertical slice of the
product backlog, touching all aspects of the technology and skills required.

Highly aligned and autonomous scrum teams do what needs to be done to meet
customer needs. Development teams working on the same product are each cross-
functional enough to work on any item from the product backlog. Each team pulls
items from the same product backlog and implements on the same aligned
cadence. If one team lacks a skill required for a requirement, they work with teams
who do to expand their capability, reducing constraining dependencies.

During each sprint, each team integrates their work with the work of other teams,
ideally through automation to make integrations less costly and troublesome. At
the end of each sprint, all product backlog items selected during the sprint are
elaborated, designed, developed, tested, integrated, documented, and approved.

Figure 19-1 illustrates how a product can be vertically sliced to enable multiple
teams to work on a single product.

With a common baseline definition of done for all scrum teams, vertical slicing
enables each team to be self-organizing in their development approach, yet
aligned with the overall release goal. The product vision and roadmap become the
glue keeping everyone together.

Scrum of scrums
Vertical slicing illustrates how scrum teams coordinate and integrate technically.
How do these different scrum teams coordinate with each other daily? The scrum
of scrums model is one way of facilitating effective integration, coordination, and
collaboration among the people that make up scrum teams. Most scaling frame-
works we show you in this chapter use scrum of scrums to enable daily coordina-
tion between scrum teams.

CHAPTER 19 De-Scaling across Teams 377

Figure 19-2 illustrates each role of each team coordinating daily with people of the
same role in other teams regarding priorities, dependencies, and impediments
that affect the broader program team. The scrum of scrums for each role is facili-
tated by someone designated and empowered by the group involved. Thorough
integration and release efforts establish a consistent and regular scrum of scrums
model.

Each day, individual scrum teams hold their own daily scrums at approximately
the same time, in separate locations. Following these daily scrums, the scrum of
scrums meetings described next occur.

FIGURE 19-1:
Vertical slices of

product features
implemented by

multiple scrum
teams.

FIGURE 19-2:
Scrum of scrums
for coordinating
between scrum

teams.

378 PART 5 Ensuring Success

Product owner scrum of scrums
Each day or as often as needed, following the individual scrum teams’ daily
scrums, the product owners from each scrum team meet for no longer than
15 minutes. They address the priorities at play and make any adjustments based
on the realities uncovered during the individual scrum team’s daily scrum. Each
product owner may address the following:

 » The business requirements that each has accepted or rejected since the last
time they met

 » The requirements that should be accepted by the time they meet again

 » Which requirements are impeded and need help from other teams to resolve
(such as “John, we won’t be able to do requirement 123 until you complete
requirement xyz from your current sprint backlog.”)

In effect, the product owners form a band of aligned, self-organizing product
owners and, similar to their own scrum teams, may huddle around a high-level
summary view of what each scrum team is working on. Figure 19-3 is an example
of what the product owners scrum of scrums board may look like.

Development team scrum of scrums
Each day following the individual scrum teams’ daily scrums, one development
team member representative from each scrum team attends the development
teams scrum of scrums for no longer than 15 minutes to discuss the following:

FIGURE 19-3:
Scrum of scrums

task board.

CHAPTER 19 De-Scaling across Teams 379

 » Their team’s accomplishments since the last time they met

 » Their team’s planned accomplishments between now and the next meeting,
and how their collective work will be integrated

 » Technical concerns with which they need help

 » Technical direction decisions that the team has made and what anyone
should be aware of to prevent potential issues

Consider rotating development team members from the individual scrum teams
who attend the scrum of scrums, either daily or for each sprint, to ensure that
everyone stays tuned in to the efforts of the overall product development.

Scrum master scrum of scrums
The scrum masters from each scrum team also meet with the other scrum masters
for no longer than 15 minutes to address the impediments that each team is deal-
ing with. Each scrum master addresses the following:

 » The individual team-level impediments resolved since the last time they met
and how they were resolved, in case other scrum masters run into the issue

 » New impediments identified since last time they met and any unresolved
impediments

 » Which impediments they need help resolving

 » Potential impediments that everyone should be aware of

Impediments needing escalation are discussed and addressed after the daily scrum
of scrums. Similar to the product owners and development team members, the
scrum masters form their own band of aligned and self-organizing scrum masters.

Your organization should have standards that guide and empower individual
teams to make tactical decisions. This way, each team doesn’t have to reinvent the
wheel.

Vertical slicing is a simple way to maintain the autonomy of each scrum team to
deliver valuable functionality within a wider program context. It is also effective
at helping teams have timely and relevant conversations about constraints and
progress.

380 PART 5 Ensuring Success

Multi-Team Coordination with LeSS
Large-scale scrum (LeSS) is another way to scale scrum across massive product
development efforts. LeSS is based on principles that support keeping scrum sim-
ple when putting multiple scrum teams together to work on the same product
backlog. LeSS focuses on system optimization so that each scrum team can be
versatile in their ability to contribute effectively to the overall product backlog. It
also presents a variety of options and approaches for addressing each scaling
challenge. In this section, we present an overview and then cover a few options
that stand out.

LeSS defines two framework sizes: LeSS and LeSS Huge. The difference lies in the
size of the total teams involved.

LeSS, the smaller framework
Figure 19-4 illustrates the basic LeSS framework, using three scrum teams as an
example. LeSS recommends no more than eight scrum teams follow the basic
model.

LeSS outlines how scrum teams work together one sprint at a time, starting with
sprint planning, followed by sprint execution and daily scrums, and ending with
sprint review and sprint retrospective. Although much of LeSS remains true to the
scrum framework, the following significant differences exist:

 » In LeSS, scrum masters typically work with one to three teams, and there is
only one product owner for up to eight teams.

FIGURE 19-4:
Basic LeSS

framework.
Used with permission, Craig Larman and Bas Vodde

CHAPTER 19 De-Scaling across Teams 381

Dedicating scrum team members to one team eliminates the overhead of
frequent cognitive demobilization and remobilization due to context switch-
ing. Always be aware of the risks of splitting the focus of team members
across multiple teams.

 » Sprint planning (Part 1) does not require all developers to attend, but at least
two members per scrum team, along with the product owner, attend. The represen-
tative team members then go back and share their information with their teams.

 » Independent sprint planning (Part 2) and daily scrum meetings occur, and
members from different teams can attend each other’s meeting to facilitate
information sharing.

 » Sprint reviews are usually combined across all teams.

 » Overall sprint retrospectives are held in addition to individual team retrospec-
tives. Scrum masters, product owners, and representatives from development
teams inspect and adapt the overall system of the product, such as processes,
tools, and communication.

LeSS Huge framework
With LeSS Huge, a few thousand people could work on one product development
effort. But the structure remains simple.

The scrum teams are grouped around major areas of customer requirements,
called requirement areas. For each requirement area, you have one area product
owner and between four and eight scrum teams (a minimum of four teams in each
requirement area prevents too much local optimization and complexity). An
overall product owner works with several area product owners, forming a product
owner team for the product. Figure 19-5 illustrates LeSS Huge.

FIGURE 19-5:
The LeSS Huge

framework.
Used with permission, Craig Larman and Bas Vodde

382 PART 5 Ensuring Success

As in scrum at a single team level, as well as in basic LeSS, you have one product
backlog, one definition of done, one potentially shippable product increment, one
product owner, and one sprint cadence across teams. LeSS Huge is simply a stack-
ing of multiple parallel LeSS implementations for each requirement area.

To enable these teams to work together effectively across the requirement areas

 » The product owner regularly coordinates with the area product owners.

 » Requirement areas are flagged in the product backlog to identify who is
planning to work on which parts of the product.

 » A set of parallel sprint meetings is needed per requirement area. Overall
sprint reviews and retrospectives involving all teams are necessary to enable
continuous inspection and adaptation beyond single teams. These multi-team
events help coordinate the overall work and process across the program.

With the exception of limiting opportunities for developers to work closely with
business people (the product owner) on a daily basis, LeSS provides a simple way
for scaling scrum across the product development effort.

LeSS, just like single-team scrum, relies heavily on development teams with busi-
ness domain knowledge and access to customers and business stakeholders
empowered to elaborate requirements in collaboration directly with customers
and the product owner. This collaboration is even more crucial in LeSS, where
multiple teams share access with only one product owner.

We also find the flexibility of coordination techniques suggested in LeSS to be
effective for teams addressing their specific multi-team coordination challenges.
In addition to a scrum of scrums (discussed earlier in this chapter) and continuous
integration (see Chapter 5), LeSS suggests several options for scrum teams coor-
dinating with other scrum teams, a few of them highlighted in the following
sections.

Sprint review bazaar
Multiple teams work toward the same product increment in each sprint, so all
teams have something to demonstrate, and all teams need stakeholder feedback
for updating their portion of the product backlog. Because all scrum teams are on
the same cadence, even a LeSS basic organization would involve a lot of sprint
review meetings for stakeholders to attend on the same day.

LeSS recommends a diverge-converge pattern to the sprint review, similar to a
science fair or bazaar format. Each scrum team sets up in one part of a room large

CHAPTER 19 De-Scaling across Teams 383

enough to accommodate all scrum teams. Each scrum team demonstrates what it
did during the sprint, collecting feedback from the stakeholders visiting its area.
Stakeholders visit their areas of interest. Scrum teams may loop through their
demonstrations a few times to accommodate stakeholders visiting multiple teams.
This approach also allows scrum team members to see demonstrations of other
scrum teams. Note that combined sprint reviews can be held in other ways.

Combining sprint reviews increases transparency and collaboration culture across
scrum teams.

Observers at the daily scrum
Although daily scrums are conducted so that the scrum team can coordinate their
work for the day, anyone is invited to listen. Transparency is key for agility. The
scrum of scrums model described previously in this chapter is a participatory
model — developers attending the integration scrum team daily scrum participate
in the discussion. However, sometimes other scrum team members just need to be
aware of what other teams are doing.

A representative of the development team from one team may attend the daily
scrum of another team, observe, and then report back to his or her own team to
determine any action to take. This can be a non-disruptive way for other scrum
teams to be involved without extra meeting time overhead.

Component communities and mentors
LeSS takes a vertical slicing approach also to dividing up the product backlog
across teams, so multiple teams may “touch” the same system or technology
components. For instance, multiple teams may work in a common database, user
interface, or automated testing suite. Setting up a community of practice (CoP)
around these areas gives these people a chance to collaborate informally on the
component areas where they spend most of their time.

A CoP usually organized by someone from one of the scrum teams who has the
knowledge and experience to teach people how the component works, monitor the
component long-term, and engage the community in regular discussions, work-
shops, and reviews of work being done in the component area.

Multi-team meetings
Similar to the combined sprint review model, LeSS scrum teams may benefit from
meeting together for other scrum planning events and activities. Product backlog

384 PART 5 Ensuring Success

refinement, sprint planning part two, and other design workshops are some
examples. LeSS recommends similar formats for each situation, common ele-
ments of which include the following:

 » An overall session first, shared among all teams, to identify which teams are
likely to take on which product backlog items.

 » Representatives of each team attend overall sessions (all can attend, but
attendance is not required).

 » Team-level sessions follow overall sessions to dive into details.

 » Multi-team breakouts follow overall sessions, as needed, with just those
teams involved.

The key to these sessions is that they are face to face, in the same room, allowing
for real-time collaboration to break down dependencies. For distributed LeSS
groups (one team in one geographic location and other teams in other locations),
videoconferencing is key.

Travelers
The more versatile your development team, the fewer bottlenecks your scrum
team will experience. Traditional organizations have specialists in technical areas,
and there are not enough of them to go around to all the scrum teams when start-
ing an agile transition. To begin bridging skill gaps across teams, technical experts
can become travelers, joining scrum teams to coach and mentor in their area of
expertise through pairing (see Chapter 5), workshops, and teaching sessions.

As this expertise is shared, the expert mentor continues to lead and grow the skills
across the organization (as a CoP organizer). In addition, scrum teams increase
their cross-functionality and can develop more efficiently. The traveler is careful
to ensure that accountability for the product remains with the development team.

Aligning through Roles with Scrum@Scale
Agile scaling models vary in complexity and simplicity. The Scrum@Scale
approach for two or hundreds of scrum teams working together is a form of basic
scrum of scrums model for scrum masters and product owners, coordinating
communication, impediment removal, priorities, requirement refinement, and
planning. The scrum of scrums model for the scrum master and product owner
roles makes this daily synchronization possible between teams across programs
of varying sizes.

CHAPTER 19 De-Scaling across Teams 385

According to the Scrum@Scale guide, if an organization can’t scrum, it can’t scale.
Building on a solid foundation of empowered, small, self-organizing teams, the
agile values and principles, and scrum values and scrum itself enables the most
effective scaling.

The scrum master cycle
Scrum@Scale groups at most five scrum teams into a scrum of scrums that work
together to deliver a product. With more complex products requiring additional
scrum teams, more than one scrum of scrums may be needed, with at most
five scrum teams each. Daily representatives from each scrum team (at least the
scrum masters) attend a scaled daily scrum meeting. It mirrors the daily scrum
for individual scrum teams, inspecting the collective progress and surfacing and
removing impediments.

With Scrum@Scale, reducing the number of people involved in a scrum of scrums
limits the communication complexities for effective cross-team collaboration. It
provides better visibility into what the scrum teams are working on and how their
work might affect each other.

Figure 19-6 illustrates the Scrum@Scale scrum of scrums model.

With product development efforts of more than five scrum teams, Scrum@Scale
implements a scrum of scrums of scrums, where a representative of each scrum
of scrums attends with four other scrum of scrums representatives to surface and
remove impediments at the scrum of scrums of scrums level.

Figure 19-7 illustrates the Scrum@Scale scrum of scrums of scrums model.

FIGURE 19-6:
Scrum@Scale

scrum of scrums
model.

©1983-2020 Jeff Sutherland & Scrum, Inc.

386 PART 5 Ensuring Success

The executive action team (EAT), shown in Figure 19-8, fulfills the scrum master
role for the entire organization, providing an agile ecosystem for enabling the
scrum teams to function optimally. The focus of the EAT is ensuring that agile
values and scrum are implemented effectively and the organization is optimized
for it.

FIGURE 19-7:
Scrum@Scale

scrum of scrums
of scrums model.

©1983-2020 Jeff Sutherland & Scrum, Inc.

FIGURE 19-8:
Scrum@Scale

executive action
team (EAT).

©1983-2020 Jeff Sutherland & Scrum, Inc.

CHAPTER 19 De-Scaling across Teams 387

The product owner cycle
Each scrum of scrums has a common shared product backlog. The product owners
organize in a similar and aligned way as the scrum masters in the scrum of
scrums, only instead of labeling them as scrum of scrums, they are a product
owner team.

A product owner team — including a chief product owner (CPO) and the product
owners of each scrum team — is responsible for ordering the product backlog and
ensuring that individual scrum teams align with the priorities. The CPO may be
one of the individual product owners or someone else dedicated to it.

Each scrum team has a product owner and focuses on prioritization of their scrum
team’s sprint backlog. The product owner team communicates the overarching
product vision.

Figure 19-9 illustrates the Scrum@Scale product owner team.

To coordinate product development for the entire organization, CPOs meet with
executives and key stakeholders in an executive metascrum (EMS) event, which is
the forum for collaborating and alignment on priorities, budget and maximizing
delivery of value.

Figure 19-10 illustrates the Scrum@Scale executive metascrum (EMS).

FIGURE 19-9:
Scrum@Scale

product owner
team.

©1983-2020 Jeff Sutherland & Scrum, Inc.

388 PART 5 Ensuring Success

Synchronizing in one hour a day
In an hour or less per day, an entire organization can align priorities for the day
and accomplish effective coordination of impediment removal. For instance, at
8:30 a.m., each individual scrum team holds their daily scrums separately. At
8:45 a.m., the scrum masters hold their scrum of scrums and the product owner
team associated with each scrum of scrums meet. At 9:00 a.m., if a scrum of scrums
of scrums exists, scrum of scrums masters meet, and the product owners meet to
coordinate priorities at the next level. Finally, at 9:15 a.m., EAT and EMS meet to
coordinate and address any issues that need to be resolved for the scrum teams.

Joint Program Planning with SAFe
Scaled Agile Framework (SAFe®) is used to scale scrum and agile principles across
multiple layers of an IT and software or systems development organization.
Figure 19-11 shows the full SAFe 5.0 big picture.

Organizations can choose from four SAFe configurations:

 » Full SAFe is the most complex configuration, supporting the building of large
integrated solutions requiring hundreds of people or more. Refer to Figure 19-11.

FIGURE 19-10:
Scrum@Scale

executive
metascrum

(EMS).
©1983-2020 Jeff Sutherland & Scrum, Inc.

CHAPTER 19 De-Scaling across Teams 389

 » Portfolio SAFe adds portfolio and investment funding, portfolio operations,
and lean governance across the organization.

 » Large Solution SAFe is for building larger and more complex solutions but
does not require portfolio-level constructs.

 » Essential SAFe is a basic starting point for smaller organizations and consists
of the minimal elements necessary. See Figure 19-12.

FIGURE 19-11:
SAFe for Lean

Enterprises 5.0.
Reproduced with permission from ©2011-2020 Scaled Agile, Inc. All rights reserved. SAFe and Scaled Agile Framework are regis-

tered trademarks of Scaled Agile, Inc.

FIGURE 19-12:
Essential SAFe
configuration.

Reproduced with permission from ©2011-2020 Scaled Agile, Inc. All rights reserved.
SAFe and Scaled Agile Framework are registered trademarks of Scaled Agile, Inc.

390 PART 5 Ensuring Success

SAFe is focused around seven core competencies of the lean enterprise:

 » Lean Agile leadership: Leadership skills to drive and sustain organizational
change by empowering people and teams to reach their potential

 » Team and technical agility: Driving team agile behaviors as well as sound
technical practices including quality and development practices

 » Agile product delivery: Building high-performing collaborative teams of
teams that use design thinking and customer focus to provide continuous
flow of valuable products with various automation toolsets

 » Enterprise solution delivery: Building and sustaining the world’s largest
enterprise cyber-solutions, software products, and networks

 » Lean portfolio management: Executing portfolio vision and strategy
formulation, chartering portfolios, prioritizing, and roadmapping

 » Organizational agility: Aligning strategy and execution by applying lean and
systems thinking to strategy and investment funding, portfolio operations,
and governance

 » Continuous learning culture: Continually increasing knowledge and
competency and performance by becoming an organization committed to
learning and innovating

Although other scaling frameworks have tactical differences, they also have many
similarities, such as the following:

 » Development is done by development teams.

 » Teams are aligned in sprint length and cadence.

 » A scrum of scrums for coordination.

We don’t go into all details of SAFe here, but we do highlight a few practices that
address some of the scaling challenges discussed previously in this chapter.

SAFe introduces several new roles, titles, and structure names. In all SAFe con-
figurations, you’ll find at the team of teams level the agile release train (ART) model,
which is a team of multiple agile teams (50–125 people in total) delivering incre-
mental releases of value. The ART provides a fixed cadence with which the teams
align and synchronize. The rest of the organization, knowing this cadence, can
also reliably plan its work around this known release train schedule.

ARTs are driven by a release train engineer (RTE), product management, and a
system architect/engineer. The RTE acts as the scrum master of the release train.

CHAPTER 19 De-Scaling across Teams 391

Product management leadership provides product ownership guidance. The sys-
tem architect/engineer provides technical leadership for the release train. The
ART works at a cadence of five iterations by default to create what is known as a
program increment (PI), which is similar to the product increment concept in scrum.

Scaled frameworks have the potential to allow your organization to remain
unchanged in the spirit of reducing organizational disruption. The reality may be
that the organization needs to change to better meet the needs of your customer.
Choose from the scaled frameworks what makes the most sense for your
organization.

Joint program increment planning
Joint program increment (PI) planning unifies agile teams across an ART. In PI
planning, teams plan their work for the next PI together, face-to-face, in the
same room at the same time.

PI planning includes the following:

 » Setting business context for the PI by a senior executive or business owner.

 » Communicating program vision by product management, and supporting
features from the backlog.

 » Presenting the system architecture vision and any agile-supportive changes to
development practices (such as test automation).

 » Outlining the planning process by the RTE.

 » Setting up team breakout sessions to determine capacity and backlog items
that they will work on in support of the program vision.

 » Reviewing draft plans with all teams, with each team presenting key planning
outputs, potential risks, and dependencies. Product management and other
stakeholders provide input and feedback.

 » Reviewing draft plans by management to identify any issues with scope, talent
allocation constraints, and dependencies. Facilitated by the RTE.

 » Breaking out of teams to adjust planning based on all feedback.

 » Reviewing the final plan, facilitated by the RTE.

The magic of PI planning is that dependencies are identified and coordinated in the
moment during the event. If one team identifies a dependency in one of its own
requirements during the team breakouts, that team sends a team member to another
team to discuss the dependency right there and then. No back-and-forth occurs.

392 PART 5 Ensuring Success

Although no amount of planning can identify every issue up front, this type of
 collaboration addresses most issues ahead of time. In addition, it establishes an
open line of communication throughout the program increment execution, ensur-
ing teams synchronize and address issues immediately and more effectively than if
they had planned as separate teams, sharing documentation without discussion.

Clarity for managers
In Chapters 3 and 16, we discuss ways management changes to enable teams to be
more agile and adaptive in nature. For larger organizations, SAFe provides struc-
ture for middle management’s involvement with agile teams. The portfolio and
large solution configurations outline roles and functions not fulfilled by individual
team members, providing some clarity to how functional, technical, and other
leadership types can clear the way and enable the individual teams to be as effec-
tive and efficient as possible, as well as connect strategy to execution.

If layers of leadership are added to your product development effort, be careful to
protect the role of the product owner and his or her proximity to the customer.
Many scaled teams have inadvertently fallen into the trap of disempowering their
scrum teams.

Disciplined Agile Toolkit
Project Management Institute’s (PMI) Disciplined Agile (DA) is based on the
premise that true business agility comes from freedom, not frameworks. DA is a
toolkit with hundreds of practices that guide teams and organizations to help
improve the way they work.

Disciplined Agile is a learning-oriented hybrid approach to information technol-
ogy (IT) solution delivery. It claims to be focused on delivering both risk and
value, enterprise aware, and scalable.

Disciplined Agile’s foundation layer outlines the principles (including agile and
lean), guidelines, roles, and teams and how they work together.

Disciplined DevOps makes up the second layer where streamlining of software
development and IT operations activities occurs. We discuss DevOps in
Chapter 10.

Layer 3 is defined as value streams, based on the FLEX workflow, which tie the
organization’s strategies and enabling decisions for improving each part of the

CHAPTER 19 De-Scaling across Teams 393

organization in the context of the entire system. The goal is not just to be innova-
tive but also to increase value realization through the following:

 » Research and development

 » Business operations

 » Portfolio management

 » Product management

 » Strategy

 » Governance

 » Sales and marketing

 » Continuous improvement

Disciplined Agile Enterprise (DAE), layer 4 of DA, is about the ability to sense and
respond to changes in the marketplace through organizational culture and struc-
ture. The DAE layer focuses on the rest of the organization’s enterprise activities
that support its value streams, including

 » Enterprise architecture

 » People management

 » Asset management

 » Finance

 » Vendor management

 » Legal

 » IT

 » Transformation

Disciplined Agile is a hybrid toolkit that builds on the foundation of other methods
and frameworks, such as DevOps, extreme programming (XP), scrum, SAFe,
kanban, and others. The frameworks provide the process bricks while DA provides
the mortar to hold the bricks together.

As mentioned at the beginning of this chapter, scaling is an anti-pattern. The best
way to prevent the need for scaling is to enable your teams to become highly
aligned and highly autonomous. Break down work and features into the smallest
and most valuable increments.

394 PART 5 Ensuring Success

Conway’s Law (by Melvin Conway, who introduced the law in 1967) states that
“Organizations which design systems are constrained to produce designs which
are copies of the communication structures of these organizations.” Similarly,
your product is a reflection of your organization, so organize as simply as
possible.

Cultural changes such as the adoption of agile techniques require organization-
wide commitment to long-term changes in mindset and structure, which we dis-
cuss next in Chapter 20.

CHAPTER 20 Being a Change Agent 395

Chapter 20
Being a Change Agent

If you’re contemplating the idea of introducing agile product development to
your company or organization, this chapter can help get you started on those
changes. Introducing agility means learning and practicing a new mindset, cul-

ture, organizational structures, frameworks, and techniques. In this chapter, you
learn key principles and steps to implementing agile product development tech-
niques. We also introduce common change models, including the model we use at
our company, Platinum Edge. We also cover leading change by example, as well as
common pitfalls to avoid in your agile transition.

Becoming Agile Requires Change
Traditional approaches to project management focus significantly on processes,
tools, comprehensive documentation, contract negotiation, and following a plan.
Although agile product development remains dedicated to addressing each of
these, the focus shifts to individuals, interactions, working functionality, cus-
tomer collaboration, and responding to change.

Waterfall organizations didn’t get where they are overnight and won’t change
overnight. For some organizations, decades of forming habits, establishing and
protecting fiefdoms, and reinforcing a traditional mindset are engrained. The

IN THIS CHAPTER

 » Understanding change management
issues and common change
management models

 » Following steps for agile adoption in
your organization

 » Avoiding common problems in
adopting agile principles

 » Leading change by example

396 PART 5 Ensuring Success

organizational structure will require some type of change, the leadership will need
to learn a new way of looking at developing people and empowering them to do
their work, and those doing the work will have to learn to work together and man-
age themselves in ways that may feel foreign.

Why Change Doesn’t Happen on Its Own
Change is about people more than it is about defining a process. People resist
change, and that resistance is based on personal experience, emotion, and fear.
David Rock developed a brain-based model for identifying five key domains that
influence our behavior in social situations, often involving change. It’s called the
SCARF model, which stands for

 » Status: Our relative importance to those around us

 » Certainty: Our ability to predict what’s coming

 » Autonomy: Our sense of control

 » Relatedness: How safe we feel around others

 » Fairness: How fair we perceive the exchanges between people

Each of these domains activates a threat or reward response in our brain, which is
what we rely on for survival and is reflected in our behavior. You might be able to
identify which of these domains influences you to feel threatened. Change is dif-
ficult for each of us, for a myriad of reasons.

We see these reactions firsthand as we help organizations make these changes. As
consultants and trainers, often our first exposure to an organization is when it
asks for formal classroom training to learn what it means to be agile and how
scrum works. After a two-day class, the level of excitement about implementing
this more modern way of thinking and working usually increases, and our stu-
dents consistently express how much it makes sense. Excitement isn’t enough for
change.

Scrum is simple. Agile values and principles resonate with almost everyone. But
none of it is easy. Scrum for developing products and services is like playing a new
game, with new positions, new rules, and a different playing field. Imagine that
an American football coach came to his team one day and said, “We’re going to
learn how to play futbol (American soccer) today. Meet me out on the pitch in
15 minutes with your gear, and we’ll get right to work.” What would happen?
Everyone might know how to play futbol based on what he or she had seen on TV
or experienced as a youth, but the team wouldn’t be ready to make the change.

CHAPTER 20 Being a Change Agent 397

A lot of confusion would ensue. Old rules, techniques, training, and thinking
would have to be unlearned for the team to learn the new stuff and come together
to compete effectively. Immediately, you’d hear questions from the players, such
as the following:

 » When can I use my hands?

 » How many timeout calls do we get?

 » Am I on offense or defense during this play?

 » Where do I line up at kick-off?

 » Who holds the ball when we kick a goal?

 » Where’s my helmet?

 » These shoes make it hard to kick sometimes.

Transitioning to agile techniques won’t happen overnight, but it will happen if
you and your organization’s leadership take a change management approach to
your agile transition. For existing waterfall organizations, agile transformation
takes at least one to three years from the time management commits to it. Com-
mitment doesn’t just mean writing a check for the training and coaching. Com-
mitment means that leaders start learning how to lead the change instead of
outsourcing it to a consultant. It’s an ongoing journey, not a destination.

Strategic Approaches to Implementing
and Managing Change

Organizational change initiatives typically fail without a strategy and discipline.
Here, we define failure as not reaching the desired end state goal of what the orga-
nization will look like after the change. Failure is often due to being unclear as to
the goal or because the change plan doesn’t address the highest risk factors and
challenges impeding the desired change.

Various approaches exist to managing change. We show you several here, includ-
ing ours (Platinum Edge), so you know what to expect as you embark on your own
change initiative.

398 PART 5 Ensuring Success

Lewin
Kurt Lewin was an innovator in social and organizational psychology in the 1940s
and established a cornerstone model for understanding effective organizational
change. Most modern change models are based on this philosophy, which is
unfreeze — change — refreeze, as illustrated in Figure 20-1.

If you want to change the shape of a cube of ice, you first have to change it from
its existing frozen state to liquid so that it can be changed or reshaped, then mold
the liquid into the new shape you want, then put it through a solidification process
to form the new shape. Unfreezing is implied between the first two states in the
figure, and the changes made are implied during the unfrozen state.

Unfreeze
The first stage represents the preparation needed before change can take place —
challenging existing beliefs, values, and behaviors. Reexamination and seeking
motivation for a new equilibrium is what leads to participation and buy-in for
meaningful change.

Change
The next stage involves uncertainty and resolving that uncertainty to do things a
new way. This transitional stage represents the formation of new beliefs, values,
and behaviors. Time and communication are the keys to seeing the changes begin
to take effect.

Refreeze
As people embrace new ways, confidence and stability increase, and the change
starts to take shape into a solid new process, structure, belief system, or set of
behaviors.

This simple pattern provides the foundation for most change management tools
and frameworks, including those we discuss in this chapter.

FIGURE 20-1:
Lewin’s unfreeze,
change, refreeze

change
philosophy.

CHAPTER 20 Being a Change Agent 399

ADKAR’s five steps to change
Prosci is one of the leading organizations in change management and benchmark-
ing research. One of Prosci’s change management tools, ADKAR, is an acronym for
the five outcomes (awareness, desire, knowledge, ability, and reinforcement) indi-
viduals and organizations need to achieve for successful change. It is a goal-
oriented model for individuals, and a focus model for the discussions and actions
organizations need to take together.

Organizational changes still require change for individuals, so the secret to suc-
cess is affecting change for everyone involved.

ADKAR outlines the individual’s successful journey through change. The five steps
of the journey also each align with organizational change activities. Typically,
these steps are completed in the order listed, but a non-linear approach is realistic
in our experience. You may need to readdress previous steps multiple times as you
progress through each step.

Awareness
Humans find change difficult. When change initiatives come top-down in an orga-
nization, people may verbally agree to them, but their actions tell a different story.
Mismatch of actions and words is usually innocent and natural. Without aware-
ness, or an understanding of the factors influencing management’s desire to
change, or especially without a recognition that something should change, indi-
viduals will not be motivated to change. Informing the individuals in an organiza-
tion, helping them have a shared understanding of the challenges that exist, and
then assessing whether awareness is common constitute the first step to success-
ful, lasting change. It is the basis, without which the initiative won’t make progress.

Desire
Based on their awareness of a challenge needing to be addressed, individuals will
have an opinion on whether or not change is necessary or desired to address it.
Making the connection between the awareness of an issue and what could or
should be done about it is the next step. Once desire exists for the individuals in
an organization, there is motivation to move together to change.

Knowledge
Desire is key, but it won’t result in change by itself. Knowledge of how to make the
change and where each individual fits into the change make up the next crucial
part of the change process. Individuals throughout the organization need to under-
stand what the changes mean for them, and leadership needs to facilitate educa-
tion and actions in a cooperative way across the organization. Knowledge often
comes from expanding understanding and skills through training and coaching.

400 PART 5 Ensuring Success

Ability
With new knowledge of how to change, implementation requires acquiring skills,
redefining roles, and clearly defining new performance expectations. Other com-
mitments may need to be delayed or replaced with new behaviors or responsibili-
ties. Continued coaching and mentoring may be required, and leadership needs to
be clear that this reprioritization of commitments is expected and encouraged.

Reinforcement
Changes don’t stick after one successful iteration. New behaviors, skills, and pro-
cesses must be reinforced through continued corrective action and coaching to
ensure that old habits don’t return.

The ADKAR model surrounds these steps with assessments and action plans to
guide leaders and individuals through their change journey. ADKAR should be
used iteratively, using scrum, inspecting and adapting each step.

Kotter’s eight steps for leading change
John Kotter’s eight-step process for leading change identifies eight common but
preventable reasons why organizations fail at their change initiatives, and
addresses each with actions that should be taken to successfully lead change.

 » Create a sense of urgency. The leadership action is to create a sense of
urgency to pull people out of complacency. People get used to the status quo,
and learn to deal with it. Helping others see the need for change requires the
creation of a sense of urgency for change. Leaders must communicate the
importance of immediate action.

 » Build a guiding coalition. The leadership action is to build a guiding coalition.
Successful change will require more than just one active supporter, even
if that one person is at the highest level of the organization. Executives,
directors, managers, and even informal social leaders with influence need
to be unified in the need for and vision of a change. This coalition must be
formed and drive the change.

 » Form a strategic vision and initiatives. Kotter estimates that leadership
undercommunicates the vision for change by as much as 1,000 times. Even
if people are unhappy with the status quo, they won’t always make sacrifices
for a change unless they believe in the proposed benefits and that change is
possible. As a change coalition, clearly define how the future is different from
the past and present, as well as the steps to make that future a reality. We
discuss visions and roadmaps for products and services in Chapter 9 — change
management also needs to begin with a clear vision of where you’re headed.

CHAPTER 20 Being a Change Agent 401

 » Enlist a volunteer army. The leadership action is to enlist a volunteer army.
Change will accelerate and last if massive numbers of people buy in and are
internally driven. As a result of leadership’s effective communication of vision
and need, people should rally around a cause they come to believe in. If they
don’t rally, reevaluate your messaging, tone, and frequency.

 » Enable action by removing barriers. The leadership action is to remove
barriers to action. Some obstacles may be only perceived, but others are real.
However, both must be overcome. One blocker in the “right” place can be the
single reason for failure. Many people tend to avoid confronting obstacles
(processes, hierarchies, working across silos), so leadership must act as
servant-leaders to identify and remove impediments that are reducing the
empowerment of individuals implementing the changes on the front lines.

 » Generate short-term wins. The leadership action is to generate short-term
wins. The end transformation goal usually can’t be achieved in the short term,
so fatigue can set in for everyone involved if successes and progress go
unrecognized along the way. Evidence of change should be highlighted and
exposed early and regularly. This reinforcement increases morale through
difficult times of change, and motivates and encourages continued efforts and
progress.

 » Sustain acceleration. The leadership action is to sustain acceleration.
Celebrating short-term wins sets a false sense of security that change is
complete. Each success should build on the previous success. Push on, and
push on harder after each success, with increased confidence and credibility.
Continue to overcommunicate the vision throughout the transformation.

 » Institute change. The leadership action is to institute change. Leadership will
have the opportunity throughout the change process to connect successes
and new behaviors with the culture’s evolution and growing strength to keep
old habits from returning. These connections should be recognized openly
and made visible to everyone as soon as successes and new behaviors are
realized.

Platinum Edge’s Change Roadmap
Throughout this book, we highlight the fact that agile processes are different from
traditional project management. Moving an organization from waterfall to an
agile mindset is a significant change. Through our experience guiding companies

402 PART 5 Ensuring Success

through this type of change, we’ve identified the following important steps to
successfully become an agile organization.

Figure 20-2 illustrates our agile transition roadmap for successful agile
transformation.

FIGURE 20-2:
Platinum Edge
agile transition

roadmap.

CHAPTER 20 Being a Change Agent 403

Step 1: Conduct an agile audit to define
an implementation strategy with
success metrics
An agile audit of your organization is

 » A three- to five-week review of the existing project management, product
development, corporate structure, objectives, and culture

 » Identification of opportunities to improve efficiency, effectiveness, and agility

 » Creation and presentation of an implementation strategy and roadmap

An implementation strategy is a plan that outlines the following:

 » Your current strengths to build on as you transition

 » The challenges you’ll face based on your current structure

 » Action items for how your organization will transition to agile product
development

Implementation strategies are most effectively performed by external agile
experts in the form of an assessment or a current state audit.

Whether you engage with a third party or conduct the assessment yourself, make
sure the following questions are addressed:

 » Current processes: How does your organization develop products today?
What does it do well? What are its problems?

 » Future processes: How can your company benefit from agile approaches?
What agile methods or frameworks will you use? What key changes will your
organization need to make? What will your transformed company look like
from a team and process perspective?

 » Step-by-step plan: How will you move from existing processes to agile
processes? What will change immediately? In six months? In a year or longer?
This plan should be a roadmap of successive steps getting the company to a
sustainable state of agile maturity.

 » Benefits: What advantages will the agile transition provide for the people and
groups in your organization and the organization as a whole? Agile techniques
are a win for most people; identify how they will benefit.

404 PART 5 Ensuring Success

 » Potential challenges: What will be the most difficult changes? What training
will be required? What departments or people will have the most trouble with
agile approaches? Whose fiefdom is being disrupted? What are your potential
roadblocks? How will you overcome these challenges?

 » Success factors: What organizational factors will help you while switching to
agile processes? How will the company commit to a new approach? Which
people or departments will be agile champions?

A good implementation strategy will guide your company through its move to
agile practices. A strategy can provide supporters with a clear plan to rally around
and support, and it can set realistic expectations for your organization’s agile
transition.

For your first agile product development effort, identify a quantifiable way to rec-
ognize success. Using metrics will give you a way to instantly demonstrate success
to stakeholders and your organization. Metrics provide specific goals and talking
points for sprint retrospectives and help set clear expectations for the team.

Metrics related to people and performance work best when related to teams rather
than to individuals. Scrum teams manage themselves as a team, succeed as a
team, fail as a team — and should be evaluated as a team.

Keeping track of success measurements can do more than help you improve
throughout your work. Metrics can provide clear proof of success when you move
past your first product and start to scale agile practices throughout your
organization.

Step 2: Build awareness and excitement
After you have a roadmap showing you the “how” of your agile transition, you
need to communicate the coming changes to people in your organization. Agile
approaches have many benefits; be sure to let all individuals in your company
know about those benefits and get them excited about the coming changes. Here
are some ways to build awareness:

 » Educate people. People in your organization may not know much — or
anything — about agile product development. Educate people about agile
principles and approaches and the change that will accompany the new
approaches. You can create an agile wiki, hold lunchtime learning sessions,
and even have hot-seat discussions (face-to-face discussions with leadership
where people can talk safely about concerns and get their questions
answered about changes and agile topics) to address concerns with the
transition.

CHAPTER 20 Being a Change Agent 405

 » Use a variety of communication tools. Take advantage of communication
channels such as newsletters, blogs, intranets, email, and face-to-face
workshops to get the word out about the change coming to your organization.

 » Highlight the benefits. Make sure people in your company know how an
agile approach will help the organization create high-value products, lead to
customer satisfaction, and increase employee morale. Chapter 21 has a great
list of the benefits of agile product development for this step.

 » Share the implementation plan. Make your transition plan available to
everyone. Talk about it, both formally and informally. Offer to walk people
through it and answer questions. We often print the transition roadmap on
posters and distribute it throughout the organization.

 » Involve the initial scrum team. As early as you can, let the people who may
work on your company’s first agile pilot know about the upcoming changes.
Involve the pilot scrum team members in planning the transition to help them
become enthusiastic agile practitioners.

 » Be open. Drive the conversation about new processes. Try to stay ahead
of the company rumor mill by speaking openly, answering questions, and
quelling myths about the agile transition. Structured communications like
the hot-seat sessions we mention earlier are a great example of open
communication.

Building awareness will generate support for the upcoming changes and alleviate
some of the fear that naturally comes with change. Communication will be an
important tool to help you successfully implement agile processes.

Step 3: Form a transformation team
and identify a pilot
Identify a team in your company that can be responsible for the agile transforma-
tion at the organization level. This agile transition team, which is described in
Chapter 18, is made up of executives and other leaders who will systematically
improve processes, reporting requirements, and performance measurements
across the organization. Selecting people for the team who are passionate about
and committed to helping the organization become more adaptive and resilient is
paramount.

The agile transition team will create organizational changes within sprints, just
like the development team creates product features within sprints. The transition
team will focus on the highest-priority changes supporting agility in each sprint
and will demonstrate its implementation, when possible, during a sprint review
with all stakeholders, including the pilot scrum team members.

406 PART 5 Ensuring Success

Starting your agile transition with just one pilot is a great way to establish a refer-
ence model of what a scrum team can look like and to demonstrate the benefits of
an agile approach. Having a reference model allows you to figure out how to work
with agile methods with little disruption to your organization’s overall business.
Concentrating on one pilot to start also lets you work out some of the kinks that
inevitably follow change. Figure 20-3 shows the types of development efforts that
benefit most from the agile approach.

When selecting your first agile pilot to establish a reference model for future
scrum teams, look for an endeavor with these qualities:

 » Appropriately important: Make sure the product you choose is important
enough to merit interest within your company. However, avoid the most
important product coming up; you want room to make and learn from
mistakes. See the note on the blame game in the later section “Avoiding
Transformation Pitfalls.”

 » Sufficiently visible: Your pilot should be visible to your organization’s key
influencers, but don’t make it the most high-profile item on the agenda. You
will need the freedom to adjust to new processes; critical product develop-
ment efforts may not allow for that freedom on the first try of a new
approach.

 » Clear and containable: Look for a product with clear requirements and a
business group that can commit to defining and prioritizing those require-
ments. Try to choose a product that has a distinct end point, rather than one
that can expand indefinitely.

FIGURE 20-3:
Product

development
efforts that can

benefit from agile
techniques.

CHAPTER 20 Being a Change Agent 407

 » Not too large: Select a pilot that you can complete with no more than
two scrum teams working simultaneously to prevent too many moving
parts at once. A single-team pilot is preferred.

 » Tangibly measurable: Choose an endeavor that you know can show
measurable value within sprints.

People need time to adjust to organizational changes of any type, not just agile
transitions. Studies have found that with large changes, companies and teams will
see dips in performance before they see improvements. Satir’s Curve, shown in
Figure 20-4, illustrates the process of teams’ excitement, chaos, and finally
adjustment to new processes.

After you’ve successfully used agile techniques on one agile product development,
you’ll have a reference model and foundation for future successes.

Step 4: Build an environment for success
One of the agile principles states, “Build projects around motivated individuals.
Give them the environment and support they need, and trust them to get the
job done.”

We outline what it means to create an environment to enable success in Chapter 6.
Study the 4 agile values and the 12 agile principles carefully (see Chapter 2) and
seriously determine whether you’re creating an environment for success or ratio-
nalizing that the status quo is good enough.

FIGURE 20-4:
Satir’s Curve.

408 PART 5 Ensuring Success

Start fixing and improving your physical and cultural environment as early as
possible.

Step 5: Train sufficiently and recruit
as needed
Training is a critical step when shifting to an agile mindset. The combination of
face-to-face training with experienced agile experts and the ability to work
through exercises using agile processes is the best way to help the team to absorb
and develop the knowledge needed to successfully begin.

Training works best when the members of the team can train and learn together,
and then bring the shared experience back to work with them. A common lan-
guage and understanding exist among them. As agile trainers and mentors, we’ve
had the opportunity to overhear conversations between team members that start,
“Remember when Mark showed us how to . . .? That worked when we did it in
class. Let’s try it and see what happens.” If the product owner, development team,
scrum master, and stakeholders can attend the same class, they can apply lessons
to their work as a team.

Recruiting talent to fill gaps in the roles you need avoids the obvious problems
you’ll have at the start of the transition. Without a dedicated product owner and
his or her clear direction to the team, how likely is your pilot to succeed? How will
that affect the team’s ability to self-organize? Who will facilitate the many inter-
actions if you’re missing a scrum master? What will the first sprint look like if
you’re missing a key skill on the development team required to minimally achieve
the first sprint goal?

Work with your human resources department as early as possible to start the
recruiting process. Work with your agile expert advisers to tap into their network
of experienced agile practitioners.

Step 6: Kick off the pilot with
active coaching
When you have a clear agile implementation strategy, an excited and trained
team, a pilot product with a product backlog, and clear measures for success, con-
gratulations! You’re ready to run your first sprint.

Don’t forget, though — agile approaches are new to the pilot team. Teams need
coaching to become high performing. Engage with agile experts for agile coaching
to start your pilot right.

CHAPTER 20 Being a Change Agent 409

Practice doesn’t make perfect. Practice makes permanent. Start off right.

As the scrum team plans its first sprint, it should not bite off too many require-
ments. Keep in mind that you’re just starting to learn about a new process and a
new product. New scrum teams often take on a smaller amount of work than they
think they can complete in their first sprints. A typical progression follows.

After you establish overall goals through the product’s vision statement, product
roadmap, and initial release goal, your product backlog needs only enough user-
story level requirements (see Chapter 10) for one sprint for the scrum team to
start development.

 » In sprint 1, scrum teams take on 25 percent of the work they think they can
complete during sprint planning.

 » In sprint 2, assuming sprint 1 was a success, scrum teams take on 50 percent
of the work they think they can complete during sprint planning.

 » In sprint 3, scrum teams take on 75 percent of the work they think they can
complete during sprint planning.

 » In sprint 4 and beyond, scrum teams take on 100 percent of the work they
think they can complete during sprint planning.

By sprint 4, the scrum team will be more comfortable with new processes, will
know more about the product, and will be able to estimate tasks with more accu-
racy. High-performance patterns — such as teams that finish early accelerate
faster — can be learned earlier by using shorter sprints.

You can’t plan away uncertainty. Don’t fall victim to analysis paralysis; set a
direction and go!

Throughout the first sprint, be sure to consciously stick with agile practices. Think
about the following during your first sprint:

 » Have your daily scrum meeting, even if you feel like you didn’t make any
progress and especially if anyone is feeling stuck. Remember to state road-
blocks, too!

 » The development team may need to remember to manage itself and not look
to the product owner, the scrum master, or anywhere besides the sprint
backlog for task assignments.

 » The scrum master may have to remember to protect the development team
from outside work and distractions, especially while other members of the
organization get used to having a dedicated scrum team around.

410 PART 5 Ensuring Success

 » The product owner may have to become accustomed to working directly with
the development team, being available for questions, and reviewing and
accepting completed requirements immediately.

In the first sprint, expect the road to be a little bumpy. That’s okay; agile pro-
cesses are about learning and adapting.

In Chapter 10, you can see how the scrum team can plan the sprint. Chapter 11
provides the day-to-day details on running the sprint.

Step 7: Execute the Roadmap to Value
When you’ve chosen your pilot, don’t fall into the trap of using a plan from an old
methodology or set of habits. Instead, use agile processes from the start.

We outline the Roadmap to Value throughout this book, introducing it in
Chapter 9 and leading you through each of the seven stages in Chapters 9
through 12.

Step 8: Gather feedback and improve
You’ll naturally make mistakes at first. No problem. At the end of your first sprint,
you gather feedback and improve with two important events: the sprint review
and the sprint retrospective.

In your first sprint review, it will be important for the product owner to set expec-
tations about the format of the meeting, along with the sprint goal and completed
product functionality. The sprint review is about product demonstration — fancy
presentations and handouts are unnecessary overhead. Stakeholders may initially
be taken aback by a bare-bones approach. However, those stakeholders will soon
be impressed as they find a working product increment replacing the fluff of slides
and lists. Transparency and visibility — show, rather than tell.

The first sprint retrospective may require setting some expectations as well. It will
help to conduct the meeting with a preset format, such as the one in Chapter 12,
both to spark conversation and avoid a free-for-all complaining session.

In your first sprint retrospective, pay extra attention to the following:

 » Keep in mind how well you met the sprint goal, not how many user stories
you completed. (Focus on outcomes achieved over outputs produced.)

 » Go over how well you completed requirements to meet the definition of done:
Designed, developed, tested, integrated, and documented.

CHAPTER 20 Being a Change Agent 411

 » Discuss how you met your success metrics or desired outcomes.

 » Talk about how well you stuck with agile principles. We start the journey with
principles.

 » Celebrate successes, even small gains, as well as examine problems and
solutions.

 » Remember that the scrum team should manage the meeting as a team, gain
consensus on how to improve, and leave the meeting with a plan of action.

You can find more details about both sprint reviews and sprint retrospectives in
Chapter 12.

Step 9: Mature and solidify improvements
Inspecting and adapting enables scrum teams to grow as a team and to mature
with each sprint.

Agile practitioners sometimes compare the process of maturing with the martial
arts learning technique of Shu Ha Ri, a Japanese term that can be translated to
“maintain, detach, transcend” as introduced in Chapter 8. The term describes
three stages in which people learn new skills:

 » In the Shu stage, new scrum teams may work closely with an agile coach or
mentor to follow processes correctly.

 » In the Ha stage, scrum teams will find that the sprint retrospective is a
valuable tool for talking about how their improvisations worked or did not
work. In this stage, scrum team members may still learn from an agile mentor,
but they may also learn from one another, from other agile professionals, and
from starting to teach agile skills to others.

 » In the Ri stage, scrum teams can customize processes, knowing what works
in the spirit of the agile values and principles.

At first, maturing as a scrum team can take a concentrated effort and commitment
to using agile processes and upholding agile values. Eventually, however, the
scrum team will be humming along, improving from sprint to sprint, and inspir-
ing others throughout the organization.

With time, as scrum teams and stakeholders mature, entire companies can mature
into successful agile organizations.

412 PART 5 Ensuring Success

Step 10: Progressively expand within
the organization
Completing a successful pilot is an important step in moving an organization to
agile product development. With metrics that prove the success of your pilot and
the value of agile methodologies, you can garner commitment from your company
to support new opportunities for applying agile techniques.

To progressively expand the agile footprint across an organization, start with the
following:

 » Support new teams. An scrum team that has reached maturity — the people
who worked on the first agile pilot — should now have the expertise and
enthusiasm to become agile ambassadors in the organization. These people
can become part of a guild to help new teams to learn and grow. See
Chapter 8 to learn more about guilds.

 » Redefine metrics. Identify measurements for success, across the organiza-
tion, with each new scrum team and with each new product.

 » Expand methodically. It can be exciting to produce great results, but
companywide improvements require significant process changes. Don’t
move faster than the organization can handle. Check out Chapter 19 for
different ways of working across multiple teams.

 » Identify new challenges. Your first agile pilot may have uncovered road-
blocks that you didn’t consider in your original implementation plan. Update
your strategy and maturity roadmap as needed.

 » Continue learning. As you roll out new processes, make sure that new team
members have the proper training, mentorship, and resources to effectively
use agile techniques.

The preceding steps work for successful agile product development transitions.
Use these steps and return to them as you expand, and you can enable agile prin-
ciples to thrive in and drive your organization’s success.

Leading by Example
Although the ten steps for successful agile transition are extremely helpful in
agile transformations, an aspect that is imperative to every successful transfor-
mation is executive ownership. Consultants and coaches advise, but it is the orga-
nization that needs to do the work. Leaders have a responsibility to “walk the walk
and talk the talk” of the new culture they’re trying to create. Agile leaders

CHAPTER 20 Being a Change Agent 413

understand that every eye is watching them always, and learning to be an agile
and adaptive leader is crucial.

The role of a servant-leader in an agile
organization
We refer to servant leadership frequently throughout this book. In agile transfor-
mations, leaders thoughts shift from asking “What’s wrong with this team?” to
“How can I help?” Cultural shifts are more successful when people know that
their leaders are alongside them, experiencing change and giving up old ways.

Instead of practicing command and control management tendencies, agile leaders
set a clear vision but allow people to figure out how to accomplish that vision on
their own. After people start sprinting toward the new vision, the leader is nearby
giving encouragement and support and bulldozing blockers. Here are some keys
for effective servant leadership.

High-performing teams are transparent — the pilot teams will work to make
everything transparent. They do this so they can make necessary adjustments as
part of their empirical process control. Some information, such as velocity, may
seem like a manager’s opportunity for improving team performance. Avoid the
trap! Velocity is not a goal to be pushed and the velocity number is meaningless as
a productivity metric — team outcomes are what matters! (We discuss how to use
velocity appropriately as a planning tool in Chapter 15.) As a leader, retrospective
results shared by the team may provide insight for organizational impediments
that you can remove. Serve the team by removing blockers impeding their ability
to reach their full potential.

Teams thrive when they feel psychologically safe. Harvard’s Dr. Amy Edmondson
defines psychological safety as the belief that you won’t be punished or humili-
ated for sharing your ideas, questions, and concerns or for admitting when you
made a mistake. Studies show that psychological safety enables moderate risk-
taking, speaking your mind, and creativity. Psychologically safe people are com-
fortable being themselves.

Keys for successful servant leadership
Following are keys for successful servant leadership:

 » Build individual and organizational capability. The more capable the
teams become, the more effective they become. Teams get better at deliver-
ing value when individual team members get better at contributing to the

414 PART 5 Ensuring Success

team’s success. Invest in training so that individuals are able to contribute to
their team’s success in more than one way. Encourage team members to
select tasks with which they may be unfamiliar so that they can stretch their
skills and capability as they perform unfamiliar work. Build not only individual
capability but also team capability. Build T-, pi-, and M-shaped individuals and
pi- and M-shaped teams. (For more on T, pi, and M-shapes, see in Chapter 7.)

 » Manage by exception. Serve where you’re needed. If a team is thriving,
stretching, and accomplishing, stay out of their way (but continue to provide
support). Focus your attention on the teams that need you most but, again,
don’t get in the way. Offer support by asking how you can help. Reviewing
sprint burndown charts will provide a clear insight into progress and is an
excellent opportunity to watch for trends. Burndown charts can highlight
where you might be able to offer help. (See Chapter 11 to learn more about
burndown charts.)

 » Adjust the manager-to-creator ratio. Agile organizations are self-organizing
and self-managing. Rather than manager support, scrum teams need servant
leadership support. The manager-to-creator ratio can be helpful for evaluating
if you have the right ratio of managers to people developing your products.
Agile organizations have low manager-to-creator ratios because the creators
are empowered to do what they do well, and the managers redirect their time
from micromanaging to providing the support and trust creators need. The
organization will have more empowered team members supported by
servant-leaders.

Avoiding Transformation Pitfalls
Organizations can make a number of common but serious mistakes when imple-
menting agile practices. Table 20-1 provides an overview of some typical prob-
lems and ways to turn them around.

As you may notice, many of these pitfalls are related to a lack of organizational
support, the need for training, and falling back on old project management prac-
tices. If your company supports positive changes, if the team is trained, and if the
scrum team makes an active commitment to upholding agile values, you’ll have a
successful agile transition.

CHAPTER 20 Being a Change Agent 415

TABLE 20-1 Common Agile Transition Problems and Solutions
Problem Description Potential Solution

Faux agile or
double work
agile or both

Sometimes organizations will say that
they are “doing agile.” They may go
through some of the practices used on
agile development efforts, but they have-
n’t embraced agile principles and continue
creating waterfall deliverables and prod-
ucts. This is sometimes called faux agile
and is a sure path to avoiding the benefits
of agile techniques. See Chapter 23 to
learn more about faux or fake agile.

Trying to complete agile processes in
addition to waterfall processes, docu-
ments, and meetings is double the work.
Double work agile results in quick team
burnout. If you’re doing twice the work,
you aren’t adhering to agile principles.

Insist on following one process — an agile
process. Garner support from management to
avoid non-agile principles and practices.

Lack of
training

Investment in a hands-on training class
will provide a quicker, better learning
environment than even the best book,
video, blog, or white paper. Lack of train-
ing often indicates an overall lack of orga-
nizational commitment to agile practices.

Keep in mind that training can help
scrum teams avoid many of the mistakes
on this list.

Build training into your implementation strat-
egy. Giving teams the right foundation of skills
is critical to success and necessary at the start
of your agile transition.

Ineffective
product
owner

The product owner role is non-traditional.
Scrum teams need a product owner who
is an expert on business needs and prior-
ities and can work well with the rest of
the scrum team on a daily basis. An
absent or indecisive product owner will
quickly sink an agile product develop-
ment effort.

Start the pilot with a person who has the time,
expertise, and temperament to be a good
product owner.

Ensure the product owner has proper training.

The scrum master can help coach the product
owner on how to leverage agile principles and
approaches, such as scrum, to build great
products, and may try to clear roadblocks
preventing the product owner from being
effective. If removing impediments doesn’t
work, the scrum team should insist on replac-
ing the ineffective product owner with a prod-
uct owner who can make product decisions
and help the scrum team be successful.

Lack of
automated
testing

Without automated testing, it may be
impossible to fully complete and test
work within a sprint. Manual testing
requires time that fast-moving scrum
teams don’t have.

You can find many low-cost, open-source test-
ing tools on the market today. Look into the
right tools and make a commitment as a devel-
opment team to using those tools.

(continued)

416 PART 5 Ensuring Success

TABLE 20-1 (continued)

Problem Description Potential Solution

Lack of
transition
support

Making the transition successfully is
difficult and far from guaranteed. It pays
to do it right the first time with people
who know what they are doing.

When you decide to move to agile product
development, enlist the help of an agile
mentor — ideally externally with a diverse set
of experience and impartial perspective —
who can support your transition.

Process is easy, but people are hard. It pays to
invest in professional transition support with
an experienced partner who understands
behavioral science and organizational change.

Inappropriate
physical
environment

When scrum teams are not collocated, or
otherwise enabled to collaborate in
real-time and high fidelity, they lose the
advantage of face-to-face communica-
tion. Scrum teams work best when they
can sit together in the same area or, if
distributed, in the same time zone.

If your scrum team is in the same building but
not sitting in the same area, move the team
together.

Consider creating a room or annex for the
scrum team to continually collaborate.

Try to keep the scrum team area away from
distracters, such as the guy who can talk forever
or the manager who needs just one small favor.

Before starting a pilot with a dislocated scrum
team, do what you can to enlist local talent. If
you must work with a dislocated scrum team,
take a look at Chapter 16 to see how to man-
age dislocated teams.

Poor team
selection

Scrum team members who don’t support
agile processes, don’t work well with
others, or don’t have capacity for
self-management will sabotage a new
agile pilot from within.

When creating a scrum team, consider how
well potential team members will enact the
agile principles. The keys are versatility and a
willingness to learn.

Discipline
slips

Remember that agile products still need
requirements, design, development,
testing, and releases. Doing that work in
sprints requires discipline to keep from
falling into old habits of, for instance,
delaying testing until the end of the
sprint.

You need more, not less, discipline to deliver
working functionality in a short iteration.
Progress needs to be consistent and constant.

The daily scrum helps ensure that progress is
occurring throughout the sprint.

Use the sprint retrospective as an opportunity
to reset approaches to discipline.

Lack of
support for
learning

Scrum teams succeed as teams and fail
as teams; calling out one person’s mis-
takes (known as the blame game) destroys
the learning environment and destroys
innovation.

The scrum team can make a commitment at
the start to leaving room for learning and to
accepting success and failures as a group.

Diluting until
dead

Watering down agile processes with old
waterfall habits erodes the benefits of
agile processes until those benefits no
longer exist.

When making process changes, stop and
consider whether those changes support
agile values and principles. Resist changes
that aren’t compatible. Remember that
maximizing work not done is essential.

CHAPTER 20 Being a Change Agent 417

Avoiding agile leadership pitfalls
Although there are pitfalls to avoid from an organizational transformation per-
spective, here are a few tips to enable organizational leader success:

 » Hold the right people accountable. Many leaders hold their direct reports
accountable for product delivery. In an agile organization, accountability for
what is built and when it’s delivered to customers lies with the product owner,
and accountability for building quality into the product lies with the develop-
ment team. Organizational leaders are servant-leaders helping product
owners make better decisions and creating opportunities for building capable
development teams who can build products to meet customer needs. Having
an organizational leader become accountable for something a product owner
or development team owns leads to frustration and de-motivation.

 » Be open to what could be. Many leaders, especially new leaders to the
organization, believe the flavor of their agile at their old organization was
better than the agile practices used in their new organization. Begin where
your new organization is and learn why they develop products the way they
do. Perhaps you can sign up to attend the same training received by your
teams to better align with the organization’s training. Beware of inadvertently
undermining the organization’s agile trajectory.

 » Get trained. The most effective transformations begin with leaders who lead
by example. Getting trained is the first and most important step leaders can
take to start exemplifying the agile culture they want to create. Otherwise,
pilot teams will wonder why they are being asked to practice agile techniques
when their untrained leaders don’t. Avoid this trap by investing time and
energy into getting trained.

 » Inspect and adapt. Use the sprint review as an opportunity to not only show
your support for the team but also to inspect and adapt. Many coaching
opportunities become exposed during a sprint review. Your absence from a
sprint review sends a message that you believe whatever the team is working
on is not important. Take advantage of the “olympic stage” performance
improvement opportunity discussed in Chapter 12.

 » Practice agility yourself. Gather your leadership team around you and use
scrum. Build a backlog and make it transparent to your organization. Plan
your sprint, hold a daily standup, demonstrate your work to your organization
in a sprint review, and then hold a team retrospective. If you think scrum is a
good idea for your organization, isn’t it a good idea for you too? Teams who
see their leaders using scrum will be more motivated to improve their scrum
practice.

418 PART 5 Ensuring Success

 » Trust others. Scrum teams fail early and often. Failure is essential for
learning. Avoid helicopter-managing and allow teams to solve their own
problems as much as possible. As a leader, you know there is no substitute
for hard-fought, lesson-learned experience. Let natural consequences lead to
unforgettable learning opportunities. Many traditional management tenden-
cies may need to be unlearned to help teams benefit from autonomy,
mastery, and purpose, as discussed in Chapter 8.

Signs Your Changes Are Slipping
The following list of questions helps you see warning signs and provide ideas on
what to do if problematic circumstances arise:

 » Are you doing “scrum, but . . .”?

“ScrumBut” occurs when organizations partially adopt scrum. Beware of old
practices that thwart agile principles, such as finishing sprints with incomplete
functionality.

Scrum is three roles, three artifacts, and five events. If you find your team
tweaking those basic framework components, ask why. Is scrum exposing
something you’re not willing to inspect and adapt?

 » Are you still documenting and reporting in the old way?

If you’re still burning hours on hefty documentation and reporting, it’s a sign
that the organization has not accepted agile approaches for conveying status.
Help managers understand how to use existing agile reporting artifacts and
quit doing double work!

 » A team completing 50 story points in a sprint is better than another team
doing 10, right?

No. Keep in mind that story points are relative and consistent within one
scrum team, not across multiple scrum teams. Velocity isn’t a team compari-
son metric. It is simply a post-sprint fact that scrum teams use to help them in
their own planning. The best way to learn how a team is performing is to
attend their sprint review. You can see more about story points and velocity in
Chapter 10 and sprint reviews in Chapter 12.

 » When will the stakeholders sign off on all the specifications?

If you’re waiting for sign-offs on comprehensive requirements to start
developing, you’re not following agile practices. You can start development as
soon as you have enough requirements for one sprint. Scrum teams we work
with start developing as early as day two.

CHAPTER 20 Being a Change Agent 419

 » Are we using offshore to reduce costs?

Ideally, scrum teams are collocated. The ability for instant face-to-face
communication saves more time and money and prevents more costly
mistakes than the initial hourly savings you may see with some offshore
teams.

Offshoring is common. We’re all for it, but when you offshore, offshore with
both feet. Create scrum teams in single geographic locations so they can be
collocated or at least collaborate all day in similar time zones. Having a fully
collocated scrum team on one continent and another fully collocated scrum
team on another continent is recommended.

If you do work with offshore teams, invest in good collaboration tools such as
individual video cameras and persistent, virtual team rooms. Short sprints
enable frequent inspection and adaptation opportunities, which is particularly
helpful for offshore and other vendor engagements.

 » Are development team members asking for more time in a sprint to finish
tasks?

The development team may not be working cross-functionally or swarming on
priority requirements. Development team members can help one another
finish tasks, even if those tasks are outside of a person’s core expertise.

This question can also indicate outside pressures to underestimate tasks and
fit more work into a sprint than the development team can handle.

 » Are development team members asking what they should do next?

After a sprint is planned and development work is under way, if the develop-
ers are waiting for direction from the scrum master or product owner, they
aren’t self-organizing. The development team should be telling the scrum
master and the product owner what it’s doing next, not the other way round.

 » Are team members waiting until the end of the sprint to do testing?

Agile development teams should test every day in a sprint. All development
team members are testers.

 » Are the stakeholders showing up for sprint reviews?

If the only people at sprint reviews are the scrum team members, it’s time to
remind stakeholders of the value of frequent feedback loops. Let stakeholders
know that they’re missing their chance to review working product functionality
regularly, correct course early, and see firsthand how the product develop-
ment is progressing.

420 PART 5 Ensuring Success

 » Is the scrum team complaining about being bossed around by the scrum
master?

Command-and-control techniques are the antithesis of self-management and
are in direct conflict with agile principles. Scrum teams are teams of peers —
there is no boss on the team. Have a discussion with the agile mentor and act
quickly to reset the scrum master’s expectations of his or her role.

 » Is the scrum team putting in a lot of overtime?

If the end of each sprint becomes a rush to complete tasks, you aren’t
practicing sustainable development. Look for root causes, such as pressure to
underestimate. The scrum master may need to coach the development team
and shield its members from product owner pressure if this is the case.
Reduce the story points for each sprint until the development team can get a
handle on the work.

 » What retrospective?

If scrum team members start avoiding or cancelling sprint retrospectives,
you’re on the slide back to waterfall. Remember the importance of inspecting
and adapting and be sure to look at why people are missing the retrospective
in the first place. If you’re not progressing, complacency usually results in
sliding backwards. Even if the scrum team has great velocity, development
speed can always be better, so keep the retrospective, and keep improving.

6The Part of Tens

IN THIS PART . . .

Communicate the benefits of agile product
development.

Address key factors for agile success.

Common signs and indications that you’re not agile.

Become an agile professional through learning,
networking, and community collaboration, with support
from valuable resources.

CHAPTER 21 Ten Key Benefits of Agile Product Development 423

Chapter 21
Ten Key Benefits of Agile
Product Development

I
n this chapter, we provide ten important benefits that agile approaches provide
to organizations, scrum teams, and products.

To take advantage of agile product development benefits, you need to trust in agile
principles, learn more about different agile practices and approaches, and dis-
cover what’s best for your team.

Higher Customer Satisfaction
Scrum teams are committed to producing products that satisfy customers. Agile
approaches for happier customers include the following:

 » Collaborate with customers to collect feedback throughout the process so
customers get what they really want.

 » Ensure that the product owner is an expert on product requirements and
customer needs, or knows where to get that information. (Check out
Chapters 7 and 11 for more information about the product owner role.)

IN THIS CHAPTER

 » Ensuring that products are rewarding

 » Making reporting easy

 » Improving results

 » Reducing risk

424 PART 6 The Part of Tens

 » Keep the product backlog updated and prioritized to respond quickly to
change. (You can find out about the product backlog in Chapter 10 and its role
in responding to change in Chapter 14.)

 » Demonstrate working functionality to stakeholders in every sprint review.
(Chapter 12 shows you how to conduct a sprint review.)

 » Deliver products to market quicker and more often with every release.

Better Product Quality
Customers demand quality products. Agile methods have excellent safeguards to
make sure that quality is as high as possible. Scrum teams help ensure quality by
doing the following:

 » Take a proactive approach to quality to prevent product problems.

 » Embrace technological excellence, good design, and sustainable development.

 » Define and elaborate requirements just in time so that knowledge of product
features is as relevant as possible.

 » Build acceptance criteria into user stories so that the development team
better understands them and the product owner can accurately validate
them.

 » Incorporate continuous integration and thorough testing into the develop-
ment process, allowing the development team to address issues while they’re
fresh.

 » Take advantage of automated testing tools, ensuring that new product
increments do not break previous increments.

 » Conduct sprint retrospectives, allowing the scrum team to continuously
improve processes and work.

 » Complete work using the definition of done: Developed, tested, integrated,
and documented.

You can find more information about agile quality in Chapter 17.

CHAPTER 21 Ten Key Benefits of Agile Product Development 425

Reduced Risk
Agile product development techniques virtually eliminate the chance of absolute
failure — spending large amounts of time and money with no return on invest-
ment. Scrum teams reduce risk by doing the following:

 » Develop in sprints, ensuring a short time between initial investment and
either failing fast or knowing that a product or an approach will work.
Front-load risk by ensuring that the product backlog is stacked with the most
valuable and most risky items first. See Chapter 13 to find out about assessing
product risks and opportunities.

 » Always have a working, integrated product, starting with the first sprint, so
that some value is added as shippable functionality every sprint, ensuring the
product won’t fail completely.

 » Develop requirements according to the definition of done in each sprint so
that sponsors have completed, usable functionality, regardless of what may
happen with the product in the future.

 » Provide constant feedback on products and processes through the following:

• Daily scrum meetings and constant development team communication

• Regular daily clarification about requirements and review and acceptance
of features by the product owner

• Sprint reviews, with stakeholder and customer input about completed
product functionality

• Sprint retrospectives, where the development team discusses process
improvement

• Releases, where the end user can see and react to new features on a
regular basis

 » Generate revenue early with self-funding products, allowing organizations to
pay for a product with little up-front expense.

You can find more information about managing risk in Chapter 17.

426 PART 6 The Part of Tens

Increased Collaboration and Ownership
When development teams take responsibility for products, they can produce great
results. Agile development teams collaborate and take ownership of product qual-
ity and performance by doing the following:

 » Make sure that the development team, the product owner, and the scrum
master work closely together on a daily basis.

 » Conduct goal-driven sprint planning meetings, allowing the development
team to commit to the sprint goal and organize its work to achieve it.

 » Hold daily scrum meetings led by the development team, where development
team members organize around work completed, future work, roadblocks,
and team morale.

 » Conduct sprint reviews, where the development team can demonstrate and
discuss the product directly with stakeholders.

 » Conduct sprint retrospectives, allowing development team members to
review past work and recommend better practices with every sprint.

 » Work in a collocated environment, allowing for instant communication and
collaboration among development team members. If you’re on a distributed
team, stay connected to your team’s videoconference.

 » Make decisions by consensus, using techniques such as estimation poker and
the fist of five.

You can find out how development teams estimate effort for requirements,
decompose requirements, and gain team consensus in Chapter 9. To discover
more about sprint planning and daily scrum meetings, see Chapter 11. For more
information about sprint reviews and retrospectives, check out Chapter 12.

More Relevant Metrics
The metrics that scrum teams use to estimate time and cost, measure perfor-
mance, and make decisions are often more relevant and more accurate than met-
rics on traditional projects. Agile metrics should encourage sustainable team
progress and efficiency in a way that works best for the team to deliver value to
the customer early and often. With agile product development, you provide met-
rics by doing the following:

 » Determine timelines and budgets based on each development team’s actual
performance and capabilities.

CHAPTER 21 Ten Key Benefits of Agile Product Development 427

 » Make sure that the development team that will be doing the work, and no one
else, provides effort estimates for requirements.

 » Use relative estimates, rather than absolute hours or days, to accurately tailor
estimated effort to an individual development team’s knowledge and
capabilities.

 » Refine estimated effort, time, and cost on a regular basis, as the development
team learns more about the product.

 » Update the sprint burndown chart every day to provide accurate metrics
about how the development team is performing within each sprint.

 » Compare the cost of future development with the value of that future
development, which helps teams determine when to end development and
redeploy capital to a new investment opportunity.

You might notice that velocity is missing from this list. Velocity (a measure of
development speed, as detailed in Chapter 15) is a tool you can use to determine
timelines and costs, but it works only when tailored to an individual team. The
velocity of Team A has no bearing on the velocity of Team B. Also, velocity is great
for measurement and trending, but it doesn’t work as a control mechanism. Try-
ing to make a development team meet a certain velocity number only disrupts
team performance and thwarts self-management.

If you’re interested in finding out more about relative estimating, be sure to check
out Chapter 9. You can find out about tools for determining timelines and budgets,
along with information about capital redeployment, in Chapter 15.

Improved Performance Visibility
With agile product development, every member of the team has the opportunity to
know how the product development is going at any given time. Teams can provide
a high level of performance visibility by doing the following:

 » Place a high value on open, honest communication among the scrum team,
stakeholders, customers, and anyone else in an organization who wants to
know about a product.

 » Provide daily measurements of sprint performance with sprint backlog
updates. Sprint backlogs can be available for anyone in an organization to
review.

428 PART 6 The Part of Tens

 » Provide daily insight into the development team’s immediate progress and
roadblocks through the daily scrum meeting. Although only the scrum team
may speak at the daily scrum meeting, any member of the product team may
observe or listen.

 » Physically display progress by using task boards and posting sprint burndown
charts in the development team’s work area every day.

 » Demonstrate accomplishments in sprint reviews. Anyone within an organiza-
tion may attend a sprint review.

Improved product development visibility can lead to greater investment control
and predictability, as described in the following sections.

Increased Investment Control
Scrum teams have numerous opportunities to control investment performance
and make corrections as needed because of the following:

 » Adjusting priorities throughout development allows the organization to have
fixed-time and fixed-price products while accommodating change.

 » Embracing change allows the team to react to outside factors such as market
demand.

 » Daily scrum meetings allow the scrum team to quickly address issues as they
arise.

 » Daily updates to sprint backlogs mean sprint burndown charts accurately
reflect sprint performance, giving the scrum team the opportunity to make
changes the moment it sees problems.

 » Face-to-face conversations remove roadblocks to communication and issue
resolution.

 » Sprint reviews let stakeholders see working products and provide input about
the products before release.

 » Sprint retrospectives enable the scrum team to make informed course
adjustments at the end of every sprint to enhance product quality, increase
development team performance, and refine processes.

 » Self-organizing, self-managing teams possess the potential for self-funding
products. (Chapter 15 tells you about self-funding products.)

CHAPTER 21 Ten Key Benefits of Agile Product Development 429

The many opportunities to inspect and adapt throughout agile product develop-
ment allow all members of the product team — the product owner, development
team, scrum master, and stakeholders — to exercise control and ultimately create
better products.

Improved Predictability
Agile product development techniques help the team accurately predict how
things will go as product development progresses. Here are some practices, arti-
facts, and tools for improved predictability:

 » Keeping sprint lengths and development team allocation the same through-
out development allows the team to know the exact cost for each sprint.

 » Using individual development team speed allows the team to predict time-
lines and budgets for releases, the remaining product backlog, or any group
of requirements.

 » Using the information from daily scrum meetings, sprint burndown charts,
and task boards allows the team to predict performance for individual sprints.

You can find more information about sprint lengths in Chapter 10.

Optimized Team Structures
Self-management puts decisions that would normally be made by a manager or the
organization into scrum team members’ hands. Because of the limited size of devel-
opment teams — which consist of three to nine people — agile product develop-
ment efforts can have multiple scrum teams, if necessary. Self-management and
size-limiting mean that agile product development can provide unique opportuni-
ties to customize team structures and work environments. Here are a few examples:

 » Development teams may organize their team structure around people with
specific work styles and personalities. Organization around work styles
provides these benefits:

• Allows team members to work the way they want to work

• Encourages team members to expand their skills to fit into teams they like

• Helps increase team performance because people who do good work like
to work together and naturally gravitate toward one another

430 PART 6 The Part of Tens

 » Scrum teams can make decisions tailored to provide balance between team
members’ professional and personal lives.

 » Because development teams estimate the work they will do, product owners
can determine how many scrum teams may be required to accomplish the
items on a product backlog.

 » Ultimately, scrum teams can make their own rules about whom they work
with and how they work.

The idea of team customization allows agile workplaces to have more diversity.
Organizations with traditional management styles tend to have monolithic teams
where everyone follows the same rules. Agile work environments are much like
the old salad bowl analogy. Just like salads can have ingredients with wildly dif-
ferent tastes that fit in to make a delicious dish, agile product development can
have people on teams with very diverse strengths that fit in to make great products.

Higher Team Morale
Working with happy people who enjoy their jobs can be satisfying and rewarding.
Agile product development improves the morale of scrum teams in these ways:

 » Being part of a self-managing team allows people to be creative, innovative,
and acknowledged for their contributions.

 » Focusing on sustainable work practices ensures that people don’t burn out
from stress or overwork.

 » Encouraging a servant-leader approach assists scrum teams in self-
management and actively avoids command-and-control methods.

 » Having a dedicated scrum master, who serves the scrum team, removes
impediments, and shields the development team from external interferences.

 » Providing an environment of support and trust increases people’s overall
motivation and morale. People benefit from improved autonomy, mastery,
purpose, and belongingness.

 » Having face-to-face conversations helps reduce the frustration of
miscommunication.

 » Working cross-functionally allows development team members to learn new
skills and to grow by teaching others.

You can find out more about team dynamics in Chapter 16.

CHAPTER 22 Ten Key Factors for Agile Product Development Success 431

Chapter 22
Ten Key Factors for Agile
Product Development
Success

Here are ten key factors that determine whether an agile transition will
succeed. You don’t need all issues resolved before you begin. You just need
to be aware of them and have a plan to address them as early in your

journey as possible.

We have found that the first three are the strongest indicators for success. Get
those right and the likelihood of your success increases dramatically.

Dedicated Team Members
In Chapter 8, we describe how products are considered long-term assets requiring
stable, dedicated, and even permanent teams. Permanent teams retain knowledge
about their product and customers. Their high performance is built over years of
retrospectives and hard work. Minor adjustments to the team may need to be
made due to career opportunities and the like, but for the most part organizations
should work to disrupt team makeup as little as possible.

IN THIS CHAPTER

 » Ensuring scrum teams have the
environment and tools they need

 » Filling all roles with the right talent

 » Enabling teams with clear direction
and support

432 PART 6 The Part of Tens

Further, it’s critical for these dedicated team members — product owner, devel-
opment team members, scrum master — to focus on a single objective at a time.
If team members are jumping between contexts hourly, daily, weekly, or even
monthly, their effectiveness is minimized due to the increased cost of just trying
to keep up with multiple task lists. The time lost due to the continual cognitive
demobilization and remobilization involved with task switching is costly.

If you think you don’t have enough people to dedicate to your scrum teams, you
definitely don’t have enough people to thrash them across multiple priorities
simultaneously. The American Psychological Association reports that task switch-
ing wastes as much as 40 percent of time.

Variance in equals variance out.

Collocation
The Agile Manifesto lists individuals and interactions as the first value. The way
you get this value right is by collocating team members to be able to have clear,
effective, and direct communication throughout development.

Challenges associated with dislocated teams include the tendency to rely on writ-
ten communication due to the inconvenience of communicating face-to-face
across geographic or even time zone separations. Written communications, espe-
cially those intended to resolve issues, are prone to costly delays and misunder-
standings. The lack of real-time, face-to-face interactions results in lower levels
of trust and familiarity with how other people think, act, and work.

In Chapter 6, we talk about collocation as the first crucial element of an agile
environment. Bell Laboratories showed a fifty-fold improvement in productivity.
One of the important factors in their success was collocating, which led to
increased customer collaboration, working functionality, and response time.
Technologies such as videoconferencing and other digital collaboration tools
make dislocated collaboration more effective. However, although technology
helps compensate for the challenges of dislocation, it’s not as valuable or sustain-
able as physically working next to your teammates. See Chapter 6 to learn more
about creating an environment for team success.

CHAPTER 22 Ten Key Factors for Agile Product Development Success 433

Done Means Shippable
Ending sprints with non-shippable functionality is an anti-pattern to becoming
more agile. Done means shippable. A sprint that ends without potentially shippa-
ble functionality is, by definition, not a sprint.

Development teams get to done by swarming on user stories — working together
on one user story at a time until it is complete before starting the next. Developers
hold each other accountable by ensuring that all rules for their definition of done,
including test automation, are satisfied before starting a new user story. Product
owners review completed work against the scrum team’s definition of done (as
well as the user story’s acceptance criteria — see Chapter 10) before approving
and moving on to a new user story.

Address What Scrum Exposes
Scrum won’t solve any problems for you, but it will expose them. Scrum will
expose weaknesses and gaps in process, policies, organizational structures, skill-
sets, roles, artifacts, meeting effectiveness, transparency, and myriad other top-
ics. What you decide to do with what is exposed is up to you. Scrum provides an
iterative inspect and adapt framework for addressing items as they’re exposed.
Scrum teams should address what is exposed on their own when they have control
over the exposed issue. When they don’t have control over the exposed issue,
there should be a path for escalating those items to those in the organization who
own the status quo and who can affect change to support scrum teams getting
better and better at delivering customer value. An effective way to resolve esca-
lated items exposed by scrum is to use the agile transition team, as explained in
Chapter 20.

Clear Product Vision and Roadmap
Although the product owner owns the product vision and product roadmap, many
people affect the clarity of these agile artifacts. Product owners need access to and
strong working relationships with stakeholders and customers throughout prod-
uct development to ensure that the vision and roadmap continually reflect what
the customer and market need. The development team must also be crystal clear
on the purpose of everything it works on, from the product vision to the individual
user story. Purpose-driven development delivers business and customer value
and mitigates risk effectively.

434 PART 6 The Part of Tens

Without a clear purpose, people wander and lack ownership. When all team mem-
bers understand the purpose, they come together. Remember the agile principle,
“The best architectures, requirements, and designs emerge from self-organizing
teams.”

We discuss the mechanics of developing the vision and product roadmap in
Chapter 9.

Product Owner Empowerment
The product owner’s role is to optimize the value produced by the development
team. This product owner responsibility requires that someone be knowledgeable
about the product and customer, available to the development team throughout
each day, and empowered to make priority decisions and give clarification imme-
diately so that development teams don’t wait or make inappropriate decisions
about the product’s direction.

Organizations with the following product owner characteristics will struggle sig-
nificantly to deliver valuable and shippable functionality at the end of every sprint:

 » The product owner struggles to make tough business decisions.

 » The product owner is not accessible to the development team because he or
she has too many other things to do besides support the development team
and work directly with customers and stakeholders.

 » More than one product owner is named by the organization for a single
product, confusing the development team as to whom to go to for clarification.

 » Stakeholders undermine decisions made by the product owner.

Although all roles on the scrum team are vital and equally important, an unem-
powered and ineffective product owner usually causes scrum teams to ultimately
fail at delivering the value customers need from the team. See Chapter 7 for more
on the product owner role.

Developer Versatility
You probably won’t start your first agile product development effort with a devel-
opment team that has the ideal level of skills required for every item in your prod-
uct backlog. However, the goal should be to achieve skill coverage as soon as

CHAPTER 22 Ten Key Factors for Agile Product Development Success 435

possible. Your team will also be challenged to meet its sprint goal if you have
single points of failure in any one skill, including testing.

From day one, you need people on your team with the intellectual curiosity and
interest to learn new things, to experiment, to mentor and to receive mentoring,
and to work together to get things to done as quickly as possible. This versatility
is discussed more in Chapter 7.

Scrum Master Clout
As you depart from command and control leadership to empower the people doing
the work to make decisions, servant leadership provides the solution. With formal
authority, a scrum master would be viewed as a manager — someone to report to.
Scrum masters should not be given formal authority but should be empowered by
leadership to work with members of the scrum team, stakeholders, and other
third parties to clear the way so that the development team can function
unhindered.

If scrum masters have organizational clout, which is informal and a socially earned
ability to influence, they can best serve their teams to optimize their working
environment. In Chapter 7, we talk more about different types of clout. Provide
training and mentorship to ensure that your scrum masters develop the soft skills
of servant leadership and put off the tendencies of commanding and directing.

Leadership Support for Learning
When organizational leaders decide to become agile, their mindset has to change.
Too often we see leadership directives without any follow-through for supporting
the learning process needed to implement the changes. Realistically, organiza-
tional transformations take from one to three years from the time leadership buys
in. Buying in means much more than writing the check for the training or coach-
ing services. It means leaders get involved and learn what they need to do to lead
the transformation from within, buying in with their time and effort and actions.

It is unrealistic to expect all the benefits of following agile principles after the first
sprint. In Chapter 20, we talk about choosing an appropriate agile pilot, one with
leeway to stumble a bit at first as everyone learns a new way of working together.

436 PART 6 The Part of Tens

The bottom line: If support for learning is merely lip service, scrum teams will
pick up on it early, will lose motivation to try new things, and will go back to wait-
ing for top-down directives on how to do their job.

Transition Support
Chapter 20 compares an agile transition to a sports team learning to play a differ-
ent sport. Good coaching at leadership and team levels increases your chances to
succeed. Coaching provides support in the following forms:

 » In-the-moment course correction when discipline starts to slip or mis-
takes are made

 » Reinforcing training

 » One-on-one mentoring for specific role-based challenges

 » Executive leadership style and mindset adjustments

See our Platinum Edge agile transition roadmap in Chapter 20 for specific steps to
take alongside your trusted agile expert coaches.

CHAPTER 23 Ten Signs That You’re Not Agile 437

Chapter 23
Ten Signs That You’re
Not Agile

The journey to become agile is popular, but business agility in itself is not the
goal. It’s a means to an end. Those who are making the journey, according
to the Scrum Alliance, report the following benefits:

 » Faster time to market

 » More alignment with the business

 » Better visibility of product development endeavors

 » Increased ability to manage changing requirements

The journey to become agile is never ending, but the agile values and principles
will guide you. Along the way, you might encounter some signs that your organi-
zation is not becoming more agile, as described in this chapter.

A Non-Shippable Sprint Product Increment
The first sign is easy to spot. If your product team is not able to demonstrate a
potentially shippable product increment at the end of the sprint, you’re not doing
it right. Agile product development builds working product increments into each

IN THIS CHAPTER

 » Understanding the organizational
benefits from adopting agile
techniques

 » Recognizing potential signs
preventing agility

 » Watching out for faux agile

438 PART 6 The Part of Tens

and every sprint. The product owner may choose not to release the product incre-
ment, but it is potentially shippable nonetheless. Agile product teams adhere to
their definition of done to instill confidence that they’ve built the right product
increment in the right way. Not having a potentially shippable product increment
at the end of a sprint is a sure sign that the team is struggling and may need help.

Signs to watch for are demonstrations of the product in non-production-like
environments, a reluctance to let people use the increment, and focusing on
attention-distracting PowerPoint presentations rather than working products.
Teams in this situation often suggest that they need more time by extending their
sprint length, which is an anti-pattern.

Agile values and principles for navigating this situation follow:

 » Value #2: Working software over comprehensive documentation.

 » Principle #7: Working software is the primary measure of progress.

Scrum teams value working products and demonstrate valuable increments dur-
ing each sprint review.

Long Release Cycles
The longer your release cycles, the less likely you’re becoming more agile. Long
release cycles are typically the result of traditional waterfall practices, in which all
the risk and value is saved until the end and then released. Or it can be a symptom
of feeling the need to deliver everything before delivering anything. Short means
different durations to different organizations and industries, but the principle of
shorter being better than longer is the constant.

Long release cycles can be reduced by focusing on the next minimum viable prod-
uct (MVP). Speed-to-market advantage is indefensible because first-to-market
winners

 » Get the opportunity to be first to capture market share

 » Validate the viability of their product by being first to capture end customer
feedback lowering the cost of pivot

 » Receive an early return on investment (ROI) realizing a dollar today is more
valuable than a dollar in the future (net present value 101)

 » Avoid internal or external obsolescence

CHAPTER 23 Ten Signs That You’re Not Agile 439

Agile product development releases early and often. Short feedback cycles provide
learning for the team, helping them to incrementally align the product to their
customer’s needs and reduce risk.

If a team is unable to have short release cycles, here are some warning signs:
product owners hesitant to release anything until they have everything, the devel-
opment team lacking confidence in the quality of its work, an engagement with a
vendor requiring a traditional waterfall approach, and most frequently, the
phrase, “We can’t release until the other pieces of the product are complete.”

Scrum teams tackle the most risky and valuable requirements first. Early failure
can be a form of success because of the speed of learning. You want to validate
assumptions and vet good ideas early. Most organization we work with use one-
week sprints. Customers demand more sooner.

Agile principles for navigating this situation follow:

 » Principle #1: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

 » Principle #3: Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

The key words are early, continuous, valuable product, frequently, and shorter timescale.

Disengaged Stakeholders
A key sign you’re not agile is when stakeholders or sponsors are disengaged.
Stakeholder feedback is essential for ensuring that the product will meet the needs
of the customers. Lack of stakeholder feedback puts the team in a precarious situ-
ation, essentially sailing a ship without a rudder.

Signs your stakeholders are disengaged are a lack of stakeholder participation
during product vision and road-mapping sessions, release planning, and most
obviously during sprint reviews. The inspection opportunity provided during
sprint reviews is the stakeholders’ best opportunity to provide feedback.

Stakeholder engagement is a key responsibility of the product owner. We also
encourage scrum masters to “never lunch alone,” continuously building relation-
ships and influence throughout the organization to enable effective and timely
removal of impediments.

440 PART 6 The Part of Tens

Agile values and principles for navigating this situation follow:

 » Value #3: Customer collaboration over contract negotiation.

 » Principle #8: Agile processes promote sustainable development. The spon-
sors, developers, and users should be able to maintain a constant pace
indefinitely.

 » Principle #5: Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done.

Scrum teams who maintain a sustainable pace as they collaborate frequently with
sponsors and stakeholders are more effective. Sponsors and stakeholders who
give the teams the needed environment and support, and then trust the team to
get the job done will see teams become even more motivated to build better prod-
ucts faster.

Lack of Customer Contact
As stated, the relationship between the scrum team and the stakeholders is essen-
tial, but another sign you’re not agile is when an invisible wall is placed between
the development team and the stakeholders or customers. Some organizations
make the mistake of distancing the technical team from the business partners.
Critical feedback needed by the team is missed when this occurs.

When a development team gets its information indirectly from secondary sources,
the process becomes much like the children’s telephone game. The message
changes each time one child whispers what he or she heard to the next child, so
that when the child who started the chain hears what the last child heard, the
message has become totally different. Similarly, customer feedback can get
twisted and filtered, losing its meaning and intent.

The closer development teams can be to the customers and the more frequent
their interactions, the better they’ll understand the customer’s problems and
challenges. The development team’s work comes to life and the motivation for
solving problems for real people in real situations makes their work more
meaningful.

CHAPTER 23 Ten Signs That You’re Not Agile 441

Agile values and principles for navigating this situation follow:

 » Value #1: Individuals and interactions over processes and tools.

 » Principle #2: Welcome changing requirements, even late in development.
Agile processes harness change for the customers competitive advantage.

 » Principle #4: Business people and developers must work together daily
throughout the project.

Accurately capturing customer needs occurs when scrum teams focus on indi-
viduals and interactions, welcome change, and then harness that change for their
customer’s competitive advantage and work with business people daily.

Lack of Skill Versatility
Teams with limited skill versatility will become victims of dependencies and con-
straints. Mature scrum teams (those who have worked together for a long time
and have self-organized effectively over time to increase skill diversity across the
team) are typically more cross-functional than less mature scrum teams. By
eliminating single points of failure in a scrum team, you increase its ability to
move faster and produce higher-quality products. (See Chapter 7 to learn more
about eliminating single points of failure.)

Over time, as each person increases his or her quantity and level of skills, the
constraints and delays due to skill gaps disappear. Scrum teams are about skills,
not titles. You want team members who can contribute to the sprint goal each and
every day without the risk of single points of failure. Working on a task that
requires a skill you haven’t yet mastered is the first step to organically increasing
the team’s capability. Outside coaches with the necessary skills who join the team
for short periods until the team learns the new skills can also help. Build M-shaped
individuals and M-shaped teams, as discussed in Chapters 7 and 16.

Agile principles for navigating this situation follow:

 » Principle #9: Continuous attention to technical excellence and good design
enhances agility.

 » Principle #11: The best architectures, requirements, and designs emerge from
self-organizing teams.

Self-organizing, cross-functional teams who strive for technical excellence build
both individual and team capability.

442 PART 6 The Part of Tens

Automatable Processes Remain Manual
Avoidable product defects are another sign of impeded agility. Defects are gener-
ally the result of poor testing. Teams who manually test take longer and are less
thorough. Manual testing doesn’t keep up with the pace of change required in
today’s environment, and falls short of instilling confidence that everything still
works whenever a change is made.

Lack of automation is often another barrier to releasing product increments
timely. With software development, continuous integration and continuous
deployment (CI/CD) pipelines enable teams to not only automate testing but also
automate deployment scripts.

Including test automation and deployment automation in the definition of done is
critical for becoming agile. Without automation, scrum teams will not be able to
deliver early and often and respond quickly to changes in technology and the
marketplace.

Agile values and principles for navigating this situation follow:

 » Value #4: Responding to change over following a plan.

 » Principle #3: Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

 » Principle #9: Continuous attention to technical excellence and good design
enhances agility.

Prioritizing Tools over the Work
Although tools (including digital tools) can be helpful to scrum teams, they can
also cause unnecessary overhead burdens and anti-patterns. A sign that you’re
not agile is when maintenance of the team’s tool requires more time and effort
than the development of the product itself. When the tool becomes the team’s
focus rather than the product they’re building, you’re not agile.

When shopping for tools to enable the product development work, remember that
a tool that takes a minute a day to update is a good tool. A tool that takes longer
than that to update is suboptimal.

CHAPTER 23 Ten Signs That You’re Not Agile 443

Examples of tool pitfalls include the following:

 » Backlog items that encourage teams to write novels instead of having
face-to-face conversations

 » Taskboard workflows that require the team to follow the tool’s product
development process rather than the process defined by the team

 » Inconvenient access to the tool

 » Reporting that encourages top-down or micromanaging behavior by stake-
holders and managers

 » Lack of ease in updating or progressively elaborating requirements

From our experience, the most agile teams use 3x5 cards and sticky notes. Their
taskboards adapt to the work at hand. Their backlogs are on walls with full trans-
parency. Remote teams use digital tools that simulate a similar experience as
physical tools. Often the teams we work with find that the cost to purchase certain
tools and the complexity to train and administer them outweighs their benefits.
Use the tool litmus test in Chapter 6 to better understand how to value individuals
and interactions over processes and tools.

Before investing in expensive enterprise tools, consider first whether you’ve taken
advantage of the lightweight approach to transparency and reporting of an agile
approach, using scrum:

 » Access scrum teams’ product backlogs and sprint backlogs, including burn-
down charts on-demand. (See Chapters 9, 10, and 11 to learn more about
product and sprint backlogs and burndown charts.)

 » Attend scrum teams’ sprint reviews to see exactly what the teams have
accomplished during the sprint.

 » Attend daily scrums — 15 minutes or less — to hear exactly what the team is
working on that day and the impediments.

 » Engage with scrum teams about real-time truth and reality rather than waiting
for delayed reports with limited context or opportunity to get instant clarifica-
tion. Large organizations have successfully navigated agile waters with a
simple spreadsheet. Refer to Chapter 11 for a simple release and sprint
burndown spreadsheet.

444 PART 6 The Part of Tens

When a sign of impeded agility due to tools arises, the following agile values and
principles help navigate the situation:

 » Value #1: Individuals and interactions over processes and tools.

 » Principle #6: The most efficient and effective method of conveying informa-
tion to and within a development team is face-to-face conversation.

 » Principle #10: Simplicity — the art of maximizing the amount of work not
done — is essential.

High Manager-to-Creator Ratio
Larger organizations likely have developed a heavy middle layer of managers. Many
organizations haven’t figured out how to function well without multiple managers
handling personnel, training, and technical direction on development issues. How-
ever, you need to strike the right balance of managers and individuals who produce
product. A high manager-to-creator ratio is another sign you’re not agile.

Imagine two professional, rival futbol (American soccer) teams of 11 players each
who both train intensively and prepare for a match against each other. Team B
beats Team A 1-0.

Both teams go back to train for the next match. Team A’s management calls on an
analyst to provide a solution. After careful analysis of both teams, he sees that
Team B has one player as goalkeeper, and ten spread across the field as defenders,
midfielders, and forwards, while Team A plays ten goalkeepers at once and one
forward to maneuver the ball down the field to the goal without any team mem-
bers getting in the way.

Team A’s management calls in a consultant to restructure the team. She finds
what seems obvious: Team A is playing way too many goalkeepers. The consultant
recommends that the team play half as many goalkeepers (five), and play five
defenders who can relay instructions to the forward from the goalkeepers who
have a view of the entire field. She also suggests doubling the assistant coaching
staff to increase training and motivation of the forward to score goals.

At the next match, Team B again beats Team A, but this time 2-0.

The forward gets cut and the assistant coaches and defenders get recognized for
their motivation strategy, but management calls for another analysis. As a result
of the analysis, they build a more modern practice facility and invest in the latest
shoe technology for the next season.

CHAPTER 23 Ten Signs That You’re Not Agile 445

Every dollar spent on someone who manages organizational processes is a dollar
not spent on a product creator.

Empower people to self-organize in meeting the needs of your customers. You
searched hard to find capable people through recruiting, training, and interviews.
You hired them for their talent and experience. Leverage that investment by trust-
ing them to get the job done. Minimize the investment you’re making in people
who don’t create product.

Agile principles for navigating this situation follow:

 » Principle #5: Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done.

 » Principle #11: The best architectures, requirements, and designs emerge from
self-organizing teams.

Highly autonomous and highly aligned teams who are empowered to do what is
best for the customer are more effective. Value autonomy, mastery, and purpose
over traditional management command and control tendencies. See Chapter 8 to
learn the benefits of people given autonomy, mastery, and purpose.

Working around What Scrum Exposes
Another sign you’re not agile is if you work around the problems exposed by
scrum’s transparency rather than addressing them head on. Agile frameworks
such as scrum are not problem-solving models; they are exposure models. The
problems exposed probably always existed, but with scrum there is clear trans-
parency and the problems stand out like a sore thumb. For the agile mindset to
thrive, the problems — not just the symptoms, but the true root causes — must
be addressed and removed. See Chapter 4 to learn more about root cause analysis
techniques.

For example, Toyota car manufacturing used an andon cord on its manufacturing
lines for years. An employee pulled the cord to stop the line immediately whenever
a problem was found that needed to be corrected. Workers were not reprimanded
for pulling the cord. Employees then worked together to fix the problem at the
root so it was not passed further down the line, becoming more and more expen-
sive to resolve. The same is true for addressing what scrum exposes: Address the
problem at the root cause and prevent it from affecting anyone else in your orga-
nization, ever.

446 PART 6 The Part of Tens

Watch out for the following signs:

 » Surface-level symptoms rather than the difficult root causes are addressed.

 » Scrum teams identify organizational constraints, keeping them from operating
in more agile ways, but they are repeatedly ignored.

 » Scrum teams tend to skip sprint retrospectives because they feel that nothing
ever changes.

These are clear signs that the leaders in the organization are not committed to the
agile transformation change. If the elephant is in the room and everyone knows it,
start eating the elephant one bite at a time.

Remembering the following agile principle will help:

 » Principle #12: At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Practicing Faux Agile
Last but not least is faux agile. Faux agile has the appearance of agile, but it’s not.

In 2019, Forbes’ Steve Denning shared the three laws of agile as a guide for orga-
nizations curious about the genuineness of their agile practices:

 » The law of the customer: An obsession with delivering value to customers as
the be-all and end-all of the organization

 » The law of the small team: A presumption that all work be carried out by
small, self-organizing teams, working in short cycles and focused on delivering
value to customers

 » The law of the network: A continuing effort to obliterate bureaucracy and
top-down hierarchy to operate as an interacting network of teams, all focused
on working together to deliver increasing value to customers

CHAPTER 23 Ten Signs That You’re Not Agile 447

Faux agile, according to Denning, demonstrates the following characteristics:

 » Early-stage agile: An agile journey never ends, so early on, the transition is
incomplete. Results can be realized quickly from implementing a few agile
practices or techniques, but time and experience are needed to stretch
into more agile practices. The key is to avoid being fooled early on that
“you’ve arrived.”

 » Agile in name only: For these organizations, you have to look beyond what
they’re saying to how they’re operating. Do people demonstrate the agile
mindset and move at the speed of a new startup? Or have they simply
renamed existing non-agile practices with new agile terms?

 » Agile for software only: Although the agile movement started with software
development, not only people creating software benefit from agile tech-
niques. Don’t be deceived in thinking agile is only for software teams. For
software teams to be successful, all parts of the organization — from senior
leadership to human resources to finance to business development — must
become agile.

 » Stalled agile journeys: When agile collides with unmoving traditional
practices, the organization may be forced to practice faux agile. When the
tension becomes severe, a leader may dismiss agile leaders and coaches by
saying that the organization is already agile. Agile principles and bureaucracy
are mutually incompatible: In the end, only one can survive.

 » Branded agile: From the Agile Manifesto and 12 principles have blossomed
many different brands of agile. Beware of consultants and trainers who insist
their branded version is the one and only true way.

 » Scaling frameworks: Scaling up agile is an anti-pattern. Progressive elabora-
tion and decomposition to the most independent and valuable increments for
the customer creates agility. Be selective regarding the various frameworks to
use what works best for your organization.

 » Agile lite: Some organizations try to apply agile principles loosely without an
agile mindset. Without an agile mindset, you’re left with an inert, lifeless set of
ceremonies.

In addition to the preceding list, you may see other subtle, yet common signs of
faux agile:

 » The organization continues to require even their scrum teams to follow a
PMO-prescribed system development lifecycle (SDLC) with dated status
reports and executive approval gates.

448 PART 6 The Part of Tens

 » The organization tries a hybrid approach that combines agile techniques with
traditional roles. This situation is like setting sail and dropping anchor at the
same time and expecting to move. You have to make a choice. Faux agile
organizations continue to support and recruit traditional roles in addition to
or instead of the types of roles that enable agile principles. These roles are not
the same and require very different skill sets. See Chapter 7 to learn more
about scrum roles.

 » The organization uses technical product owners in addition to or in the
absence of business- or customer-facing product owners.

If any of these ten anti-patterns exist in your organization, address them head on.
The benefits of agile approaches to product development are extensive, proven,
and worthwhile. Continually use agile values and principles to keep your journey
to improved business agility on track.

CHAPTER 24 Ten Valuable Resources for Agile Professionals 449

Chapter 24
Ten Valuable Resources
for Agile Professionals

Many organizations, websites, blogs, and companies exist to provide
information about and support for agile product development. To help
you get started, we compiled a list of ten resources that we think are val-

uable to support your journey to improved agility.

Agile Project Management For Dummies
Online Cheat Sheet

www.dummies.com

You can use our online cheat sheet as a companion to this book as you start imple-
menting the agile values and principles from the Agile Manifesto, as well as mod-
els outlined throughout the book. You’ll find how-to guides, tools, templates, and
other helpful resources for your agile toolkit. To get to the cheat sheet, go to
www.dummies.com, and then type Agile Project Management For Dummies in the
Search box.

IN THIS CHAPTER

 » Finding support for successful agile
transitions

 » Getting involved with active agile
communities

 » Accessing resources for common
agile approaches

450 PART 6 The Part of Tens

Scrum For Dummies
In 2018, we published the second edition of Scrum For Dummies (Wiley) as a field
guide not only to scrum but also to scrum in industries and business functions
outside information technology (IT) and software development. Scrum can be
applied in any situation where you want early empirical feedback on what you’re
building or pursuing.

Learn about scrum in industries such as game software development and tangible
goods production (construction, manufacturing, hardware development) and in
services such as healthcare, education, and publishing.

Explore scrum’s applications in business functions, including operations, portfo-
lio management, human resources, finance, sales, marketing, and customer
service.

And in everyday life, see how scrum can help you organize your pursuits of dating,
family life, retirement planning, and education.

The Scrum Alliance
www.scrumalliance.org

The Scrum Alliance is a nonprofit professional membership organization that
promotes the understanding and usage of scrum. The alliance achieves this goal
by promoting scrum training and certification classes, hosting international and
regional scrum gatherings, and supporting local scrum user communities. To find
a scrum user group in your area, search for your location at www.scrumalliance.
org/resources/groups.

The Scrum Alliance site is also rich in blog entries, white papers, case studies, and
other tools for learning and working with scrum. Chapter 18 lists many of the
Scrum Alliance certifications.

The Agile Alliance
www.agilealliance.org

The Agile Alliance is the original global agile community, with a mission to help
advance the 12 Agile Principles and common agile practices, regardless of

CHAPTER 24 Ten Valuable Resources for Agile Professionals 451

approach. The Agile Alliance site has an extensive resources section that includes
articles, videos, and presentations. Find an index of independent and local agile
community groups across the world at www.agilealliance.org/communities/.

International Consortium for
Agile (ICAgile)

icagile.com

ICAgile is a community-driven organization helping people become agile through
education, awareness, and certification. Its learning roadmap provides career path
development support in business agility, enterprise and team agile coaching,
value management, delivery management, agile engineering, agile testing, and
DevOps.

Mind the Product and ProductTank
www.mindtheproduct.com

Mind the Product is the world’s largest community of people passionate about
product. They also founded ProductTank meetups so that product leaders could
connect, share, and learn from each other. With over 150,000 members world-
wide, they offer blogs, global, regional and local events, local meetups, and train-
ing by leading product management experts from all over the world. The resources
at ProductTank tend to be high quality, and the content is both unique and rele-
vant to the issues facing agile product development teams. Find a local Product-
Tank meetup in your area at www.mindtheproduct.com/producttank.

Lean Enterprise Institute
www.lean.org

Lean Enterprise Institute publishes books, blogs, knowledge bases, news, and
events for the broader community of lean thinkers and practitioners. As you pur-
sue agile product development, remember to incorporate lean thinking in all that
you do. Lean.org is a good launching pad for you to explore the lean topics relevant
to your situation.

452 PART 6 The Part of Tens

Extreme Programming
http://ronjeffries.com

Ron Jeffries was one of the originators of the extreme programming (XP) develop-
ment approach, along with Kent Beck and Ward Cunningham. Ron provides
resources and services in support of XP’s advancement on his ronjeffries.com site.
The “What Is Extreme Programming?” section of the site summarizes the core
concepts of XP. Other articles and extreme programming resources are also availa-
ble in wiki format at http://wiki.c2.com/?ExtremeProgrammingCorePractices.

The Project Management Institute Agile
Community

www.projectmanagement.com/practices/agile

The Project Management Institute (PMI) is the largest nonprofit project manage-
ment membership association in the world. With nearly 3 million members in
most countries throughout the world, PMI supports an agile community of prac-
tice and an agile certification, the PMI Agile Certified Practitioner (PMI-ACP).

The PMI website provides information and requirements for PMI-ACP certifica-
tion along with access to papers, books, and seminars about agile project
management.

Platinum Edge
www.platinumedge.com

Since 2001, our team at Platinum Edge has been helping companies maximize
organizational return on investment (ROI). Visit our blog to get the latest insights
on practices, tools, and innovative solutions emerging from our work with Global
1000 companies and the dynamic agile community.

CHAPTER 24 Ten Valuable Resources for Agile Professionals 453

We also provide the following services, which are outlined in more detail in
Chapter 20:

 » Agile audits: Auditing your current organizational structure and processes to
create an agile implementation strategy that delivers bottom-line results. We
also provide feedback on your current agile transition efforts to help you
assess whether the investment you’ve made is generating the results you
hoped for.

 » Recruiting: With access to the best agile and scrum talent — because we’ve
trained them — we help you find the right people to bootstrap your scrum
teams, including scrum masters, scrum product owners, and scrum
developers.

 » Training: Public and private customized corporate agile and scrum training
and certification, regardless of your level of knowledge. In addition to custom
and non-certified training options, we offer the following certification classes:

• Certified ScrumMaster (CSM)

• Advanced Certified ScrumMaster (A-CSM)

• Certified Scrum Product Owner (CSPO)

• Certified Scrum Developer (CSD)

• LeSS, Scrum@Scale, and SAFe approaches to scaling

• PMI Agile Certified Practitioner (PMI-ACP) test preparation

 » Transformation: Nothing is a larger factor of future success than proper
coaching. We follow up on agile training with embedded agile coaching and
mentoring to ensure that the right practices occur in the real world.

Index 455

Numbers
80/20 rule, 85-86

A
Abbe, Ernest, 37
AC+OC>V formula, 243, 267, 305-306
Accredited Kanban Consultant (AKC) and Trainer

(AKT), 370
Achor, Shawn, 156
ADKAR model, 399-400
Advanced Certified Scrum Product Owner (A-CSPO), 370
Advanced Certified ScrumMaster (A-CSM), 370, 453
affinity estimating, 195-196
Agile Alliance, 12, 22, 450-451
agile champion, 360, 363
agile coach. See agile mentors
agile concepts, 91-92, 239
Agile Manifesto. See also Agile Principles; agile project

management
contracts in, 284
cross-industry application of, 24
discussion, 13, 22-23
documentation in, 27
focus of, 23
Four Values of

customer collaboration, 28, 278
flexibility, 29-30
overview, 24-25
people over process, 25, 219
working functionality, 26-28

history of, 21-22
litmus test, 47

agile mentors
discussion, 102, 134, 258
in pilot scrum team, 367-368, 371
product team and, 124
scrum team daily responsibilities of, 229

Agile Principles
customer satisfaction in, 32-34
discussion, 13, 31

grouping of, 31
history of, 22, 30. See also Platinum Principles
litmus test, 47
procurement and, 278-279
product development in, 38-42
quality in, 34-36
teamwork in, 36-38

agile procurement management
contracts in

closing, 286
cost structures, 282-283
creating, 283-285

discussion, 269, 278-279
needs determination in, 280-281
traditional versus, 279-280
vendors in

selecting, 281-283
working with, 281, 285-286

agile product development
adaptation in, 19
advantages of, 39-41
blank templates for

management comparison, 41
sprint backlog burndown chart,

221, 237
determining duration in, 290
discussion, 3, 16
inspections in, 19
litmus test, 47
minimizing scope bloat in, 19
principles of, 38-39
success rates of, 18
superiority of, 18-19
traditional product management versus

active products, 17-18
overview, 16-17
team permanence, 17
value maximization, 18

traditional project management
versus, 41

value cost formula in, 16

Index

456 Agile Project Management

agile project management. See also risk management
adaptation in, 92
agile principles in

customer satisfaction, 32-34
overview, 31
quality, 34-36

attractive features of
to customers, 65-66
to development teams, 67-68
efficiency, 64-65
to executives, 64-65
greater value, 66-67
higher quality, 66
increased flexibility, 65-66
increased ROI, 65
less waste, 66-67
to managements, 66-67

benefits of
better metrics, 426-427
better product quality, 424
higher customer satisfaction, 423-424
higher team morale, 430
improved predictability, 429
increased collaboration, 426
increased ownership, 426
increased visibility, 427-428
iterative methodology, 50-52
more investment control, 428-429
optimized team structures, 429-430
overview, 49-50, 423
reduced risk, 425

blank templates for
customer satisfaction, 33
human interactions/processes, 26
identifying useful documentation, 27

certification, 104
changes caused by, 45-46
customer collaboration in, 28-29
customer satisfaction in, 53-54
discussion, 1, 7-8, 92-93
empirical control method, 14, 92
evolution of, 46
frameworks, 13
history of, 11-13
human interactions in, 25-26

inspection in, 92
litmus test, 47
methodologies, 13
mixing traditional and, 14
more information on, 2
Platinum Principles in

overview, 42
resisting formality, 42-43
teamwork, 43-44
visualization, 44-45

quality and, 34
superiority of, 23-24
synonyms in, 13-14
techniques, 13
tools, 13
traditional versus

failure detection, 63-64
flexibility, 55-57
overview, 54-55
project metrics, 62-63
quality, 60-61
ROI, 64
speed, 60-61
stability, 55-57
team performance, 61-62
unproductive activities, 57-60

transparency in, 92
waterfall project management versus

overview, 14-15
planning, 162

working functionality documentation in,
26-28

agile release train (ART) model, 390-391
Agile Retrospectives (Derby, Larsen), 249
agile scope management

agile principles related to, 270
change in

artifacts, 277-278
evaluating and prioritizing, 274-276
introducing, 274
overview, 272
understanding, 273-274

discussion, 269
time management and, 297-298
traditional versus, 270-272

Index 457

agile transition. See also change management
committing to

agile champion, 360
individual, 359-360
organizational, 358-359
questions to consider, 361-362
timing, 362-363

creating environment for
overview, 368-369
Roadmap to Value, 369
training programs, 370-371

discussion, 357-358
key factors in successful

addressing exposed issues, 433
clear product vision, 433-434
clear roadmap, 433-434
coaching provided, 436
collocation, 322, 432
dedicated teams, 431-432
definition of done, 433
developer versatility, 434-435
overview, 371, 431
product owner empowerment, 434
servant leadership, 435
support for learning, 435-436

pilot scrum team in
agile champion, 363
agile mentor, 367-368, 371
development team, 366
overview, 364-365, 371
product owner, 365-366
scrum master, 366-367
transition team, 364-365

systems thinking in, 364-365
warning signs in

customer contact lacking, 440-441
disengaged stakeholders, 439-440
faux agile, 446-448
ignoring exposed issues, 445-446
lack of automation, 442
limited skill versatility, 441
long release cycles, 438-439
manager-to-creator imbalance, 444-445
non-shippable product increment, 437-438
overview, 437
prioritizing tools, 442-444

AKC (Accredited Kanban Consultant) and Trainer
(AKT), 370

ART (agile release train) model, 390-391
artifacts

for cost management, 299, 306
discussion, 179
in scope management, 277, 288
in scrum approach, 102-103
for time management, 298-299

automated testing, 232, 342-344

B
barely sufficient documentation, 27-28, 40, 181
Barton, Brent, 261
Basex, 136
Beck, Kent, 13, 105, 452
Beedle, Mike, 13
Bennekum, Arie van, 13
big bang development, 50-51
Blanchard, Kenneth, 315
Booch, Grady, 12
budgets, 300-303
bugs, 332
bulletin boards, 112, 115-116
burndown chart

communicating progress with, 328-329
discussion, 206
sprint backlog, 220-222

C
Cagan, Marty, 71
CAL (Certified Agile Leadership), 370
capital expenditures (CapEx), 18, 256
capital redeployment, 305
cause-and-effect diagram, 87-88
CD (continuous deployment), 201, 231
Center for Applied Ethics, 315
Certified Agile Leadership (CAL), 370
Certified Enterprise Coach (CEC), 370
Certified Scrum Developer (CSD), 104, 370, 453
Certified Scrum Product Owner (CSPO), 104, 120,

370, 453
Certified Scrum Professional (CSP) for ScrumMasters

(CSP-SM), Product Owners (CSP-PO), and
Developers (CSP), 370

458 Agile Project Management

Certified Scrum Trainer (CST), 104, 370
Certified ScrumMaster (CSM), 104, 120, 370, 453
Certified Team Coach (CTC), 370
change management. See also agile transition

discussion, 395-396
executive ownership in

overview, 412-413
servant leadership, 413-414

pitfalls to
leadership pitfalls, 417-418
organizational pitfalls, 415-416
overview, 414
warning signs, 418-420

Platinum Edge model for
overview, 401-402
Step 1: implementation, 403-404
Step 2: awareness, 404-405
Step 3: transition team, 405-407
Step 4: environment, 407-408
Step 5: training and recruiting, 408
Step 6: pilot and coaching, 408-410
Step 7: Roadmap to Value, 410
Step 8: gather feedback, 410-411
Step 9: solidify improvements, 411
Step 10: progressively expand, 412

resistance in, 396-397
SCARF model in, 396
tools for

ADKAR model, 399-400
Kotter model, 400-401
Lewin model, 398
overview, 397

cheat sheet, 2, 449
chief product owner (CPO), 387
Christensen, Clayton, 75-77
CI (continuous integration), 35, 201, 231, 339
Cirillo, Francesco, 136
Cockburn, Alistair, 13, 112, 325
collaboration tools, 118, 120-121, 323
collective code ownership, 339
collocation

key for transition, 432
success rate of team, 322
team, 61, 110-112

communication
agile principles in, 324-325
agile versus traditional, 324
among dislocated teams, 111-112, 322-323
discussion, 307
effectiveness of different forms of, 112
face-to-face

effectiveness, 325-326
goals, 114
overview, 111-112, 114, 117
tools, 115-116

fidelity, 112
human interactions and, 26
inefficiency of email for, 58-59
methods for, 325-328
openness and, 137-138
osmotic, 111-112
product owner and, 125-126
progress tracking and, 328-330
resisting formality in, 42-43
with stakeholders, 39, 125-126
team size limits and, 146
technological tools for

collaboration tools, 118, 323
constraints, 121
overview, 116
persistent chat, 117
videoconferencing, 117, 322
virtual collaboration board, 120-121

in waterfall project management, 53
in XP approach, 105

communication fidelity, 112
community of practice (CoP), 158, 383-384
comprehensive documentation, 26-28
context switching. See multitasking
continuous deployment (CD), 201, 231
continuous integration (CI), 35, 201, 231, 339
contract negotiation, 28-29
Conway, Melvin, 394
Conway’s Law, 394
CoP (community of practice), 158, 383-384
cost management

agile principles in, 299
agile versus traditional, 300

Index 459

discussion, 287, 299
lowering costs in, 304-306
using artifacts for, 299, 306
velocity and, 303-306

COVID-19 pandemic, 109-110, 119, 321
CPO (chief product owner), 387
credentials. See specific certifications
Crossing the Chasm (Moore), 167
Crystal methodology, 13
CSD (Certified Scrum Developer), 104, 370, 453
CSM (Certified ScrumMaster), 104, 120, 370, 453
CSP (Certified Scrum Professional) for ScrumMasters

(CSP-SM), Product Owners (CSP-PO), and
Developers (CSP), 370

CSPO (Certified Scrum Product Owner), 104, 120,
370, 453

CST (Certified Scrum Trainer), 104, 370
CTC (Certified Team Coach), 370
Cunningham, Ward, 13, 105, 452
customer representative. See product owner
customers

attraction to agility, 65-66
collaboration with, 28-29, 278
demands of, 70
determining needs of

customer-focused goals, 82
embracing early failure, 81
liberating structures, 83-84
overview, 79
root cause analysis (RCA), 84-88
scientific method, 79-80
story maps, 83

discussion, 69-70
identifying

empathy maps, 74-75
interviews, 78
job-to-be-done approach, 75-78
journey maps, 74-75
overview, 71
product canvas and, 71-74
product discovery workshops and, 79

involvement of, 53-54
satisfaction of, 32-34, 423-424
stakeholders as, 36
uncertainty and, 70

D
DA (Disciplined Agile) toolkit, 392-394
daily scrum. See also Roadmap to Value; shippable

functionality; sprints
addressing roadblocks in, 217, 234-235, 354
discussion, 103, 114, 215-216
duration of, 217
guidelines for, 217-218
purpose of, 218
scrum master and, 58, 156
scrum teams and, 164
standing during, 217-218
topics addressed in, 216-217

death march, 40
decomposition of requirements. See requirements
definition of done

discussion, 26-27, 36
estimation poker and, 194
product increment and, 240-241
risk reduction in, 348-349

Demarco, Tom, 265
demonstrations, 59
dependencies, 178, 199
Derby, Esther, 249
development operations (DevOps), 201
development teams. See also multiple teams; team

dynamics
building capability in, 157-158
building knowledge in, 157-158
crucial role of, 54
discussion, 35, 124
human interactions in, 26
long-term

advantages, 149-150
characteristics of effective, 153
knowledge, 150-151
overview, 149
Shu Ha Ri concepts, 153-154
team development phases, 151-153
working agreement, 152, 154-155

members of, 128-130
motivating

alignment, 157
autonomy, 155, 157
mastery, 156

460 Agile Project Management

development teams (continued)
overview, 155
purpose, 156

philosophy of
cross-functionality, 141-142
dedicated team, 140-141
overview, 139-140
ownership, 147
self-management, 144-145
self-organization, 143-144
size limits, 146-147

product development and, 230-231
project management and, 21-22
quality management by, 334
in scrum approach, 101-102
scrum team daily responsibilities of, 226
sprint backlog and, 102, 224

DevOps (development operations), 201
Digital.ai, 100
Disciplined Agile (DA) toolkit, 392-394
dislocated teams, 111-112, 321-323. See also remote

work; team dynamics
distractions

common, 113
Pomodoro technique for avoiding, 136
scrum master and, 61-62, 113, 231
velocity and, 295

documentation, 27-28, 59-60
double work agile, 329
Drive (Pink), 155
Drucker, Peter, 82
DSDM approach, 12

E
earned value management (EVM), 329
EAT (executive action team), 386
Economics of Fatigue and Unrest, The (Florence), 37
Economy, Peter, 83
Edmondson, Amy, 413
email, 58-59
empathy maps, 74-75
empirical control method, 14, 17, 80
EMS (executive metascrum), 387-388
end user. See customers
epic user stories, 173, 190

Essentialism (McKeown), 262
estimation poker, 192-194
EVM (earned value management), 329
executive action team (EAT), 386
executive metascrum (EMS), 387-388
Extreme Programming Explained (Beck), 105
extreme programming (XP)

continuous deployment (CD) in, 201
continuous integration (CI) in, 35, 201
discussion, 40, 92, 105, 452
key practices of, 106-107, 231
other approaches and, 107-108
principles of, 105-106
quality management in, 338

F
facilitator. See scrum master
FDD approach, 12
feature requirements, 173
feedback, 50, 70
Fibonacci sequence, 190, 193
Fifth Discipline, The (Senge), 150
fishbone diagram, 87-88
fist of five, 133
“5 Simple Rules of Agile Portfolio Management,

The” (Barton), 261
five why’s, 87
flexibility, 29-30
Florence, P. Sargant, 37
formality, 43, 50, 114-115
Fowler, Martin, 13

G
gold-plating documentation, 27-28
Greanleaf, Robert K., 315
Greenleaf Center for Servant Leadership, 315
Grenning, James, 13
Gudith, Daniela, 265

H
hardware, 8
Harvard Business Review, 12-13, 156
Harvard Business School, 75

Index 461

Highsmith, Jim, 13
human interactions, 25-26
Hunt, Andrew, 13

I
ICAgile (International Consortium for Agile), 370, 451
icons, 2
IEEE (Institute of Electrical and Electronics Engineers), 8
IID techniques, 12
Implementing Lean Software Development

(Poppendieck, Poppendieck), 151
information radiator, 115, 198, 235-236, 330
information technology (IT) industry, 21, 201
Inspired (Cagan), 71
Institute of Electrical and Electronics Engineers (IEEE), 8
International Consortium for Agile (ICAgile), 370, 451
INVEST approach, 192
IRR (internal rate of return), 255-256
Ishikawa, Kaoru, 87-88
Ishikawa diagram, 87-88
IT (information technology) industry, 21, 201
iterations. See also sprints

discussion, 14, 32, 51
history of, 95
short duration of, 35, 40, 56
in waterfall project management, 94-95
Winston Royce on, 94-95

iterative methodology, 12, 50-52

J
Jeffries, Ron, 13, 105, 452
job-to-be-done approach, 75-77
Johnson, Spencer, 315
Jones, Daniel T., 96
journey maps, 74-75
just-in-time (JIT) approach, 96, 161, 164-165. See also

product roadmap; Roadmap to Value

K
kanban

board, 115, 117
discussion, 97-99
operational support and, 202
task board and, 223

Kanban Coaching Professional (KCP), 370
Kanban Management Professional (KMP I, II), 370
Kanban University, 370
Kellerman, Gabriella Rosen, 156
Kennedy, John F., 82
Kern, Jon, 13
Ketterin, Charles, 79
Kilburn, Tom, 93
KMP I, II (Kanban Management Professional), 370
Kotter, John, 400

L
large-scale scrum (LeSS), 380-384
Larsen, Diana, 249
law of diminishing returns, 267
Layton, Mark, 11, 21
lean canvas, 72
lean coffee approach, 158
Lean Enterprise Institute, 451
lean product development

discussion, 92, 95
JIT elaboration in, 96
kanban practices in, 97-99
other approaches and, 107-108
principles of, 96-97

Lean Software Development (Poppendieck,
Poppendieck), 96

Lencioni, Peter, 72
LeSS (large-scale scrum), 380-384
Lewin, Kurt, 398
Lewin model, 398
liberating structures, 83-84, 86
linear methodology, 50-52
Lipmanowicz, Henri, 83

M
Machine that Changed the World, The (Womack, Jones,

Roos), 96
macrostructures, 84
Management by Objectives, 82
“Managing the Development of Large Software Systems”

(Royce), 8, 12, 93
Manifesto for Agile Software Development, 13. See also

Agile Manifesto
Marick, Brian, 13

462 Agile Project Management

Mark, Gloria, 265
Mark IIAiken Relay Calculator, 332
marshmallow challenge, 50-51
Martin, Robert C., 13
mass-production methods, 95-96
Maxwell, John C., 81
McCandless, Keith, 83
McKeown, Greg, 262
Mehrabian, Albert, 112
Mellor, Steve, 13
microstructures, 84
mind maps, 87
Mind the Product, 451
minimal marketable features, 197-198, 289
minimum viable product (MVP), 81, 83, 438
Moltke, Helmuth von, 162
Moore, Geoffrey, 167-168
multiple teams

common challenges with, 374-375
DA toolkit for, 392-394
discussion, 373-374
LeSS for

combined meetings, 383-384
combined sprint review, 382-383
communities of practice (CoP),

383-384
daily scrum, 383
huge framework, 381-382
overview, 380
smaller framework, 380-381

SAFe for
configurations, 388-389
core competencies, 390-391
joint program PI, 391-392
managers, 392

Scrum@Scale approach for
overview, 384-385
product owner cycle, 387-388
scrum master cycle, 385-386
synchronization, 388

vertical slicing for
overview, 376
scrum of scrums model, 376-379

multitasking, 113, 140, 153, 265-266
MVP (minimum viable product), 81, 83, 438

N
“New New Product Development Game, The” (Takeuchi,

Nonaka), 12-13, 153
New One-Minute Manager, The (Blanchard, Johnson), 315
nine why’s, 87
Nonaka, Ikujiro, 13, 153
Nordstrum Innovation Lab, 81

O
Ohno, Taiichi, 247
One Minute Manager (Blanchard, Johnson), 315
one-day sprints, 202
operational expenditures (OpEx), 256
osmotic communication, 111-112

P
pair programming, 43, 106, 232, 338
PAL I (Professional Agile Leadership), 370
Pareto, Vilfredo, 85
Pareto rule, 85-86
Patton, Jeff, 83
PDSA (Plan-Do-Study-Act) approach, 11-12
peer review, 232, 338-339
pen-pencil rule, 200
permanent teams. See development teams
personas, 187-189, 205
physical environments

communication and
face-to-face, 114-117
information radiator, 115
technological tools, 116-117

creating
dedicated areas, 112
removing distractions, 113
team collocation, 110-112

discussion, 109-110
tools for

constraints, 121
litmus test, 119
overview, 118
purpose, 119
success-encouraging tools, 119-121
virtual collaboration board, 120-121

Index 463

PI (program increment) planning, 391-392
Pink, Daniel H., 155
Plan-Do-Study-Act (PDSA) approach, 11-12
planning. See also product roadmap; Roadmap to Value

adaptation stage of, 165
decomposition of requirements in, 164
discussion, 161
excessive, 50
inspection stage of, 165
JIT elaboration in, 161-162

planning poker, 192-194
Platinum Edge

discussion, 21
forced team dislocation and, 120
history of, 12
services offered by, 368, 452-453

Platinum Principles, 30, 42-45
PMI (Project Management Institute), 104, 452
PMI Agile Certified Practitioner (PMI-ACP), 104, 452
PMI-ACP (PMI Agile Certified Practitioner), 104, 452
PMI-ACP (Project Management Institute Agile Certified

Practitioner) accreditation, 371
pods, 112
Pomodoro technique, 136
Poppendieck, Mary, 96
Poppendieck, Tom, 96
portfolio management

agile principles in, 253-255
CapEx in, 256
discussion, 253-254
forecasting investment returns in

agile mentors, 258
overview, 256
product mix, 260-261
risk-value matrix, 257-258
short- versus long-term decisions, 259-260
value and risk prioritization, 257-259

IRR in, 255-256
managing

avoiding multitasking, 265-266
continuous prioritization, 267-268
engaging vendors, 264
incremental funding, 264
keys to effectiveness, 264-265
other factors, 262, 264
overview, 261

reducing complexity, 261-262
reducing investments, 266-267
revising investments, 268
visualization, 262-263

multitasking and, 265-266
OpEx in, 256
other costs to consider in, 256
SWOT analysis in, 254

Practice of Management, The (Drucker), 82
processes, 25-26
product backlog. See also release planning

communicating progress with, 328-329
completing, 180-182
continually updating, 189
cost management and, 299
discussion, 27, 175, 179
estimates, 182
Pareto rule with, 86
product owner and, 224
product roadmap and, 180
risk management and, 353
in scrum approach, 102
story maps and, 83
time management and, 299
user stories and, 182

product canvas, 71-74
product discovery, 79, 127-128
product increment, 102-103, 240-241. See also shippable

functionality; sprint review
product mix, 260-261
product owner

characteristics of good, 125-127
communication and, 114, 125-126
daily scrum and, 217
discussion, 32-33, 53-54
product backlog and, 102, 224
product development and, 128, 230
product discovery and, 127-128
quality management and, 334, 339-340
responsibilities of, 124-125
review of user stories, 233
in scrum approach, 101
scrum team daily responsibilities of, 225,

236-237
sprint review meeting and, 245
team support from, 61

464 Agile Project Management

product roadmap. See also product backlog; user stories
cost management and, 299
creating

arranging product features, 175-176
assessing value and risk, 178-179
defining product requirements, 173-175
determining time frames, 180
estimating and prioritizing, 176-180
identifying stakeholders, 172-173
overview, 171-172
saving, 180
updating, 180

discussion, 162
product canvas and, 74
risk management and, 353
in scrum approach, 108
time management and, 299

product scope, 270
product team, 124
product vision statement

creating
drafting, 167-169
finalizing, 170
overview, 165-166
product objective, 167
revising, 169-170
validating, 169-170

discussion, 162, 340, 353
product canvas and, 74
in scrum approach, 108

ProductTank, 451
Professional Agile Leadership (PAL I), 370
Professional Scrum Developer (PSD I), 370
Professional Scrum Master (PSM I, II, III), 370
Professional Scrum Product Owner (PSPO I, II, III), 370
program increment (PI) planning, 391-392
progressive elaboration of requirements. See

requirements
project management, 8-12. See also agile project

management; traditional project management
Project Management Institute Agile Certified Practitioner

(PMI-ACP) accreditation, 371
Project Management Institute (PMI), 104, 452
Project Mercury, 12
project scope, 270
Prosci ADKAR model, 399-400

PSD I (Professional Scrum Developer), 370
PSM I, II, III (Professional Scrum Master), 370
PSPO I, II, III (Professional Scrum Product Owner), 370

Q
quality management

agile principles in, 331-332
in agile project management, 424
daily testing and, 335
by development teams, 334
discussion, 34-36, 331
feedback loops in, 333
proactive

acceptance criteria, 340
collective code ownership, 339
continuous integration (CI), 339
development techniques, 338
face-to-face communication, 340-341
good design, 337-338
organizational commitment, 337
overview, 335-336
pair programming, 338
peer review, 338-339
role of product owner, 339-340
sustainable work pace, 341
technical excellence, 337-338

risk and, 333
traditional versus agile, 332-333
via automated testing, 342-344
via inspecting and adapting, 341-342

R
R&D (research and development), 80
“Racing in Reverse,” 40
RCA (root cause analysis), 84-88
Reece, Andrew, 156
refactoring, 105-106
relative estimating, 13, 108, 178
release planning. See also sprints

cost management and, 299
creating, 198-200
discussion, 82, 163
key activities of, 197-198
minimal marketable features, 198

Index 465

minimal marketable features and, 197
product deployment in

market preparation, 204-205
operational support, 201-203
organizational activities, 203-204
overview, 200-201

risk management and, 354
in scrum approach, 108
sprints and, 199-200
time management and, 299
in XP approach, 106

release train engineer (RTE), 390
remote work. See also dislocated teams; team dynamics

communication and
overview, 111-112, 116
tools, 117-121

discussion, 109-110
requirements, decomposition of

affinity estimating, 195-196
epic user stories, 190
estimation poker, 193-194
features, 173, 190
guide, 190-191
INVEST approach, 192
overview, 164, 183
during sprints, 190
tasks, 174
themes, 173, 190
user stories, 174

research and development (R&D), 80
return on investment (ROI), 167
Ries, Eric, 81
risk management

agile principles in, 345
in agile project management, 54, 425
agile versus traditional, 345-347
artifacts and meetings for, 353-354
end-of-sprint and, 241
inherent risk reduction in

definition of done, 348-349
failing fast concept, 351-352
overview, 348
self-funding development, 349-351

quality and, 333
in waterfall project management, 53

risk-value matrix, 257-258
roadblocks, 207, 217, 234-235
Roadmap to Value. See also product backlog; release

planning
adaptation stage in, 165
creating, 180
decomposition of requirements in, 164
discussion, 369
inspection stage in, 165
product roadmap in

arranging product features, 175-176
assessing value and risk, 178-179
creating, 171-172
defining product requirements, 173-175
estimating and prioritizing, 176-180
identifying stakeholders, 172-173
saving, 180
updating, 180

product vision statement in
creating, 166-170
overview, 165-166

release planning in
creating, 198-200
key activities, 197-198
minimal marketable features,

197-198
release sprints, 199-200

scope management and, 273-274
stages of, 162-164

Robichaux, Alexi, 156
Rock, David, 396
ROI (return on investment), 167
role

of agile mentor, 134
of development team members,

128-130
discussion, 123-124
of product owner

overview, 124
product development, 128
product discovery, 127-128
responsibilities, 124-126

of scrum master
characteristics, 131-132
responsibilities, 130-131

of stakeholders, 125, 132-134

466 Agile Project Management

Roos, Daniel, 96
root cause analysis (RCA), 84-88
Royce, Winston, 8-9, 12, 93
RTE (release train engineer), 390

S
Scaled Agile Framework (SAFe), 388-392
SCARF model, 396
Schwaber, Ken, 12-13
scientific method, 79
scope bloat, 10
scope creep, 272
Scrum Alliance, 12, 24, 104, 370, 450
scrum approach. See also daily scrum

additional features of, 108
agile mentors in, 102
artifacts in, 102-103
customer satisfaction and, 32
discussion, 92, 100
events in, 103
history of, 12-13
other approaches and, 107-108
roles in, 101-102
sprints in, 100-101
stakeholders in, 102
terminology in, 53

Scrum For Dummies (Layton), 11, 450
scrum master

characteristics of good, 131-132, 144-145
coaching provided by, 230
discussion, 53-55, 102
distractions prevented by, 61-62, 113, 231
meetings and, 58, 156
quality management and, 334
responsibilities of, 130-131
roadblocks addressed by, 207, 217, 234
scrum team daily responsibilities of, 227, 236-237
servant-leader role of, 314-315
sprint retrospective meetings and, 249-250

scrum room, 112
scrum teams. See also daily scrum; multiple teams;

physical environments; team dynamics
communication among dislocated, 111-112
daily meetings, 164
discussion, 54-55, 92, 123-124

philosophy of
cross-functionality, 141-142
dedicated team, 140-141
overview, 139-140
ownership, 147
self-management, 144-145
self-organization, 143-144
size limits, 146-147

pilot
agile mentor, 367-368
development team, 366
overview, 364-365
product owner, 365-366
scrum master, 366-367
stakeholders, 367

product discovery workshops and, 79
sprint daily responsibilities of

agile mentors, 228-229
development team members, 226
overview, 224-225, 236-237
product owner, 225
scrum master, 227
stakeholders, 228

sprint reviews and, 103
stakeholders and, 102

Scrum@Scale approach, 384-388
self-management

excellence product of, 337
of scrum master, 144-145
team dynamics and, 309-313

Senge, Peter, 150
servant leadership, 314, 413-414, 435
shadowing, 43
shared drives, 109-110
Sherwart, Walter, 11-12
shippable functionality. See also user stories

developing in, 230-231
discussion, 229-230
elaborating in, 230
sprint review and, 240-241
verifying in

automated testing, 232
identifying roadblocks, 234-235
mob programming, 232-233
overview, 231

Index 467

pair programming, 232
peer review, 232
product owner review, 233

Shu Ha Ri concepts, 153-154
Sinek, Simon, 166
Slack, 117
Slack (Demarco), 265
SMART goals, 82
software development, 8, 93-94, 201
Software Development as a Cooperative Game

(Cockburn), 325
Spears, Larry, 314
Spira, Jonathan, 136
sprint backlog

communicating progress with,
328-329

cost management and, 299
creation of, 206-207
development teams and, 102, 224
discussion, 27
overview, 206
risk management and, 354
in scrum approach, 102
time management and, 299
tracking progress with

burndown chart, 206, 220-222
end of day, 237-238
overview, 219

sprint planning
components of, 206
discussion, 82, 205
duration of, 205
meeting for

create backlog tasks, 211-212
overview, 207-209
risk management, 354
selecting user stories, 209-210
setting goals, 209-210
task guidelines, 212-213

sprint retrospective. See also Roadmap to Value
adapting in, 250
discussion, 103, 164, 239, 245
goal of, 246-247
inspecting in, 250, 342
meeting

duration, 248
guidelines, 249

scrum master, 249-250
topics for inspection, 248-249, 354

planning for, 247
sprint review. See also Roadmap to Value

communicating progress with, 328-329
determining future investment during, 243
discussion, 84, 164, 239-240
meeting

collecting feedback, 244-245, 342
duration, 242
feedback cycle, 241-242, 354
guidelines, 242-244
overview, 241
product owner tasks, 245
scheduling, 242

preparation for, 240
scrum teams and, 103
shippable functionality and, 240-241
value of, 244

sprints. See also release planning; scrum teams; user
stories

discussion, 14, 32, 51, 53
planning for, 103, 163
release planning and, 199-200
requirement decomposition during, 190-191
scientific method and, 80
in scrum approach

adaptations, 101
inspections, 100-101
overview, 100

scrum team daily responsibilities and
agile mentors, 229
development team members, 226
end of day, 236-237
overview, 224-225
product owner, 225
scrum master, 227
stakeholders, 228

shippable functionality and
developing, 230-231
elaborating, 230
identifying roadblocks, 234-235
overview, 229-230
verifying, 231-233

short duration of, 35, 40, 56
stakeholders and, 103
testing during daily, 335

468 Agile Project Management

stakeholders
communication with, 39, 125-126
creating user stories with, 187-189
as customer, 32
discussion, 132-134
disengaged, 439-440
pilot scrum teams and, 367
product discovery workshops and, 79
product roadmap and, 172-173
product team and, 124
role of, 125
in scrum approach, 102
scrum team daily responsibilities of, 228
scrum teams and, 102
sprints and, 367
user stories and, 186-187

Standish Group
“2015 Chaos Report,” 345-346
study on project success/failure rates, 11, 18
study on scope bloat, 10

stay-at-home orders, 109-110, 119
story maps, 83
Sutherland, Jeff, 12-13
swarming, 108, 141-142, 211
SWOTs (strengths, weaknesses, opportunities, and

threats), 254
system architect/engineer, 390-391
systems thinking, 364-365

T
Takeuchi, Hirotaka, 13, 153
task board

communicating progress with, 328-330
kanban similar to, 223
risk management and, 354
tracking progress with

components, 222-223
overview, 219, 222
reading, 223-224

task requirements, 174
TDD (test-driven development), 106, 338
team coach. See scrum master
team dynamics. See also multiple teams

agile principles in, 307-308
agile versus traditional, 308-309, 429-430

collocation and, 61
discussion, 307
managing

cross-functionality, 317-319
dedicated teams, 316-317
dislocated teams, 321-323
limited size, 320-321
openness, 319-320
overview, 309
self-management, 309-313
servant leadership, 314-315

Team Kanban Practitioner (TKP), 370
team room, 112
Teams, 117
teams. See also team dynamics

dedicated, 140-141, 431-432
discussion, 26, 36-37
focus, 61-62
in Platinum Principles, 43-44
stakeholders and, 36
strategies for effective, 38
support for, 61
tighter control and, 62-63
visualization techniques and, 71-72
in waterfall project management, 53

technical excellence, 35, 337-338
telepresence robots, 117
test-driven development (TDD), 106, 338
testing

during daily sprints, 335
discussion, 35-36, 51, 60
in XP approach, 105

theme requirements, 173, 190
Thomas, Dave, 13
thrashing. See multitasking
time management. See also velocity

advantages of agile, 288
agile principles and, 287-288
agile versus traditional, 288
discussion, 287
lowered costs and, 305
multiple teams for, 298
scheduling in, 289
scope changes and, 297-298
using artifacts for, 298-299

Index 469

TKP (Team Kanban Practitioner), 370
Toyota Production System

discussion, 247
just-in-time (JIT) elaboration and, 96
kanban practices and, 97, 223

traditional procurement management, 279-280
traditional project management

agile product development versus, 41
agile versus

failure detection, 63-64
flexibility, 55-57
overview, 54-55
project metrics, 62-63
quality, 60-61
ROI, 64
speed, 60-61
stability, 55-57
team performance, 61-62
unproductive activities, 57-60

cost management in, 299-300
customer involvement in, 28-29
death march in, 40
inflexibility of, 23, 30
modern products and, 50
planning in, 161
risk management in, 53
scope in, 270
unrealistic nature of, 50-51

traditional scope management, 270-272
Tuckman, Bruce, 151
Tuckman phases to performance, 151-153

U
uniform product developer titles, 44
useful documentation, 27-28
user stories. See also shippable functionality; sprints

creating
acceptance criteria of, 184
advantages, 186
determining product requirements, 189-190
electronic tools, 185
identifying stakeholders, 186-187
identifying users, 187-188
three C’s formula, 185

decomposition of requirements in, 174
discussion, 13, 82, 183, 290
INVEST approach and, 192
product backlog and, 182
product owner review of, 233
requirement decomposition in

affinity estimating, 195-196
estimation poker, 192-194

in scrum approach, 108
User Story Mapping (Patton, Economy), 83

V
value cost formula, 16
values

discussion, 134-135
establishing new

commitment, 135-136
courage, 138-139
focus, 136-137
openness, 137-138
respect, 138

velocity
adjusting, 291
attaining consistent, 296-297
calculating, 291-292
cost management and, 303-304
for determining other costs, 306
discussion, 199
estimating timeline using, 292-294
increasing, 246, 294-295, 304
for long-range planning, 289-290
monitoring, 291
in scrum approach, 108

vertical slicing, 376-379
videoconferencing tools, 117, 120
virtual collaboration board, 120-121
visualization activities

for determining customer needs, 83
discussion, 44-45
for identifying customers

empathy maps, 74-75
journey maps, 74-75

product canvas for, 71-72, 74

470 Agile Project Management

W
Wake, Bill, 192
waterfall project management

agile versus, 14-15, 162, 346
discussion, 8-9, 12, 14
failure in agile versus, 351-352
inflexibility of, 22, 30
iterations in, 94-95
major aspects of, 53
origins of, 93-94
risk management in, 53
scope creep in, 283
unrealistic nature of, 50-51

whiteboards, 111-112, 115-116
Womack, Japes P., 96
working agreement, 154-155
working functionality

comprehensive documentation versus,
26-28

discussion, 328
product increment and, 102-103

Wujec, Tom, 50

X
XP. See extreme programming

About the Authors
Mark C. Layton, known globally as Mr. Agile, is an organizational strategist and
Scrum Alliance certification instructor with over 20 years in the project and pro-
gram management field. He is the 2020 president of the Project Management
Institute (PMI) Southern Nevada Chapter as well as the Los Angeles chair for
the Agile Leadership Network. Mark is the author of the international Scrum
For Dummies and Agile Project Management For Dummies book series, creator of the
Agile Foundations Complete Video Course, and is the founder and managing
member of Platinum Edge, LLC — an enterprise transformation company that
uses organizational design to help businesses with their agile transformation
journey.

Prior to founding Platinum Edge in 2001, Mark developed his expertise as a con-
sulting firm executive, a program management coach, and an in-the-trenches
project leader. He also spent 11 years as a Cryptographic Specialist for the US Air
Force, where he earned both Commendation and Achievement medals for his
accomplishments.

Mark holds MBAs from the University of California, Los Angeles, and the National
University of Singapore; a B.Sc. (summa cum laude) in Behavioral Science from
Pitzer College/University of La Verne; and an A.S. in Electronic Systems from the
Air Force’s Air College. He is also a Distinguished Graduate of the Air Force’s
Leadership School, a Certified Scrum Trainer (CST), a certified Project Manage-
ment Professional (PMP), a recipient of Stanford University’s advanced project
management certification (SCPM), and a certified Scaled Agile Framework Pro-
gram Consultant (SAFe SPC).

In addition to his books and videos, Mark is a frequent speaker at major confer-
ences on Lean, Scrum, DevSecOps, and other agile solutions.

Additional information can be found at https://platinumedge.com.

Steven J Ostermiller is a trainer, coach, and mentor helping organizations evolve
to maximize business value and minimize risk through lean and agile principles
and practices. He is the founder and executive director of Utah Agile (in partnership
with Agile Alliance, Scrum Alliance, and Silicon Slopes), a non-profit professional
community committed to increasing agility for Utah businesses, technology, and
individuals. Steve developed and taught the agile project management curriculum
for Ensign College in Salt Lake City, Utah and serves on its project management
advisory board. He was technical editor of Scrum For Dummies and Pearson
Education’s Agile Foundations Complete Video Course.

Steve’s expertise comes from nearly 20 years of successes and failures as a project
manager, product manager, operations executive, scrum master, and agile coach,

trainer, and consultant. He has worked with executive leadership and product
development teams in a variety of industries on the Fortune lists. He is a Scrum
Alliance Certified Scrum Trainer (CST), an ICAgile Certified Professional in
Coaching and Facilitation (ICP-ACC, ICP-ATF), and a Project Management
Professional, and holds a B.S. in Business Management/Organizational Behavior
from the Marriott School of Management at Brigham Young University.

Dean J. Kynaston is an experienced scrum master, coach, and mentor with nearly
20 years of experience empowering leaders, teams, and individuals to become
more agile. With Steve, he taught the agile project management curriculum at
Ensign College in Salt Lake City, Utah. Dean was also a technical editor for Scrum
For Dummies and the author of multiple Platinum Edge blog articles.

A Platinum Edge alumni himself and former Project Management Professional
(PMP), Dean has worked with multiple organizations and seen much success
applying agile values and principles. He has worked with executive leadership and
individual teams in both for-profit and non-profit industries, particularly in real
estate, construction, automotive, healthcare, and pharmaceuticals. He holds an
MBA from Boise State University, is a Certified Scrum Professional (CSP-SM and
CSP-PO), and earned a B.S. in Business Management with an emphasis in finance
from the Marriott School of Management at Brigham Young University. As a busy
father of eight children, Dean finds many opportunities to use scrum with his
family team as well.

Dedications
To my special snowflake. I’m so thankful to have you in my life and to be sharing
this wild ride with you. The world hasn’t seen anything yet. — Mark

To Gwen, my complete and final answer. And to our five littles, who give me every
reason to continuously inspect and adapt. — Steve

To my angel mother, an amazing woman and nurturer who led by example in
“enduring to the end.” — Dean

Authors’ Acknowledgments
We’d like to again thank the numerous people who contributed to the previous
editions of this book and helped make it a reality. We’re also very grateful to those
who helped make this third edition a more valuable field guide: Andrew Workmon,
for his insight and technical editing; Caroline Patchen for yet again ensuring that
these concepts are more easily understood through clear visualization; Craig
Larman, Bas Vodde, Jeff Sutherland, and Dean Leffingwell for providing scaling
options to the public and for their valuable feedback on the de-scaling chapter; to
Susan Pink and Debbye Butler; and to Steve Hayes and the broader John Wiley &
Sons team. You are all fantastic professionals; thank you for the opportunity to
make this book even better.

And a shout-out to the signers of the Agile Manifesto. Thanks for coming together,
finding common ground, and kickstarting the discussion that inspires us to keep
becoming more agile.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Susan Pink

Copy Editor: Susan Pink

Technical Editor: Andrew Workmon

Proofreader: Debbye Butler

Sr. Editorial Assistant: Cherie Case

Production Editor: Mohammed Zafar Ali

Cover Image: © 3d_kot/Shutterstock

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Understanding Agility
	Chapter 1 Modernizing Project Management
	Project Management Needed a Makeover
	The origins of modern project management
	The problem with the status quo

	Introducing Agile Project Management
	How agile projects work

	Agile Project Management Is Becoming Agile Product Management
	Differences between managing a project versus developing a product
	Why agile product development works better

	Chapter 2 Applying the Agile Manifesto and Principles
	Understanding the Agile Manifesto
	Outlining the Four Values of the Agile Manifesto
	Value 1: Individuals and interactions over processes and tools
	Value 2: Working software over comprehensive documentation
	Value 3: Customer collaboration over contract negotiation
	Value 4: Responding to change over following a plan

	Defining the 12 Agile Principles
	Agile principles of customer satisfaction
	Agile principles of quality
	Agile principles of teamwork
	Agile principles of product development

	Adding the Platinum Principles
	Resisting formality
	Thinking and acting as a team
	Visualizing rather than writing

	Changes as a Result of Agile Values
	The Agile Litmus Test

	Chapter 3 Why Being Agile Works Better
	Evaluating Agile Benefits
	How Agile Approaches Beat Historical Approaches
	Greater flexibility and stability
	Reduced nonproductive tasks
	Higher quality, delivered faster
	Improved team performance
	Tighter control
	Faster and less costly failure

	Why People Like Being Agile
	Executives
	Product development and customers
	Management
	Development teams

	Chapter 4 Agility Is about Being Customer Focused
	Knowing Your Customers
	Common methods for identifying your customer

	Figuring Out the Problem Your Customer Needs to Solve
	Using the scientific method
	Failing early is a form of success
	Defining customer-focused business goals
	Story mapping
	Liberating structures — simple rules to unleash a culture of innovation

	Understanding Root Cause Analysis
	Pareto rule
	Five why’s
	Ishikawa (fishbone)

	Part 2 Being Agile
	Chapter 5 Agile Approaches
	Diving under the Umbrella of Agile Approaches
	Reviewing the Big Three: Lean, Scrum, and Extreme Programming
	An overview of lean
	An overview of scrum
	An overview of extreme programming

	Putting It All Together

	Chapter 6 Agile Environments in Action
	Creating the Physical Environment
	Collocating the team
	Setting up a dedicated area
	Removing distractions

	Low-Tech Communicating
	High-Tech Communicating
	Choosing Tools
	The purpose of the tool
	Tools that encourage the success of forced team dislocation
	Organizational and compatibility constraints

	Chapter 7 Agile Behaviors in Action
	Establishing Agile Roles
	Product owner
	Development team member
	Scrum master
	Stakeholders
	Agile mentor

	Establishing New Values
	Commitment
	Focus
	Openness
	Respect
	Courage

	Changing Team Philosophy
	Dedicated team
	Cross-functionality
	Self-organization
	Self-management
	Size-limited teams
	Ownership

	Chapter 8 The Permanent Team
	Enabling Long-Lived Product Development Teams
	Leveraging long-term knowledge and capability
	Navigating Tuckman’s phases to performance
	Focusing on fundamentals
	Creating a working agreement

	Enabling Autonomy, Mastery, and Purpose
	Autonomy
	Mastery
	Purpose
	Highly aligned and highly autonomous teams

	Building Team Knowledge and Capability

	Part 3 Agile Planning and Execution
	Chapter 9 Defining the Product Vision and Product Roadmap
	Agile Planning
	Progressive elaboration
	Inspect and adapt

	Defining the Product Vision
	Step 1: Developing the product objective
	Step 2: Creating a draft vision statement
	Step 3: Validating and revising the vision statement
	Step 4: Finalizing the vision statement

	Creating a Product Roadmap
	Step 1: Identifying product stakeholders
	Step 2: Establishing product requirements
	Step 3: Arranging product features
	Step 4: Estimating efforts and ordering requirements
	Step 5: Determining high-level time frames
	Saving your work

	Completing the Product Backlog

	Chapter 10 Planning Releases and Sprints
	Refining Requirements and Estimates
	What is a user story?
	Steps to create a user story
	Breaking down requirements
	Estimation poker
	Affinity estimating

	Release Planning
	Preparing for Release
	Preparing the product for deployment
	Prepare for operational support
	Preparing the organization
	Preparing the marketplace

	Sprint Planning
	The sprint backlog
	The sprint planning meeting

	Chapter 11 Working throughout the Day
	Planning Your Day: The Daily Scrum
	Tracking Progress
	The sprint backlog
	The task board

	Agile Roles in the Sprint
	Keys for daily product owner success
	Keys for daily development team member success
	Keys for daily scrum master success
	Keys for daily stakeholder success
	Keys for daily agile mentor success

	Creating Shippable Functionality
	Elaborating
	Developing
	Verifying
	Identifying roadblocks

	Information Radiators
	The End of the Day

	Chapter 12 Showcasing Work, Inspecting, and Adapting
	The Sprint Review
	Preparing to demonstrate
	The sprint review meeting
	Collecting feedback in the sprint review meeting

	The Sprint Retrospective
	Planning for retrospectives
	The retrospective meeting
	Inspecting and adapting

	Part 4 Agility Management
	Chapter 13 Managing a Portfolio: Pursuing Value over Requirements
	Understanding the Differences in Agile Portfolio Management
	Should we invest?
	Factors for forecasting product investment returns

	Managing Agile Product Portfolios
	Should we continue investing?
	Inspecting and adapting to the next opportunity

	Chapter 14 Managing Scope and Procurement
	What’s Different about Agile Scope Management?
	Managing Agile Scope
	Understanding scope throughout product development
	Introducing scope changes
	Managing scope changes
	Using agile artifacts for scope management

	What’s Different about Agile Procurement?
	Managing Agile Procurement
	Determining need and selecting a vendor
	Understanding cost approaches and contracts for services
	Working with a vendor
	Closing a contract

	Chapter 15 Managing Time and Cost
	What’s Different about Agile Time Management?
	Managing Agile Schedules
	Introducing velocity
	Monitoring and adjusting velocity
	Managing scope changes from a time perspective
	Managing time by using multiple teams
	Using agile artifacts for time management

	What’s Different about Agile Cost Management?
	Managing Agile Budgets
	Creating an initial budget
	Creating a self-funding product
	Using velocity to determine long-range costs
	Using agile artifacts for cost management

	Chapter 16 Managing Team Dynamics and Communication
	What’s Different about Agile Team Dynamics?
	Managing Team Dynamics
	Becoming self-managing and self-organizing
	Supporting the team: The servant-leader
	Working with a dedicated team
	Working with a cross-functional team
	Reinforcing openness
	Limiting development team size
	Managing product development with dislocated teams

	What’s Different about Agile Communication?
	Managing Agile Communication
	Understanding agile communication methods
	Status and progress reporting

	Chapter 17 Managing Quality and Risk
	What’s Different about Agile Quality?
	Managing Agile Quality
	Quality and the sprint
	Proactive quality
	Quality through regular inspecting and adapting
	Automated testing

	What’s Different about Agile Risk Management?
	Managing Agile Risk
	Reducing risk inherently
	Identifying, prioritizing, and responding to risks early

	Part 5 Ensuring Success
	Chapter 18 Building a Foundation
	Organizational and Individual Commitment
	Organizational commitment
	Individual commitment
	Getting commitment
	Can you make the transition?
	Timing the transition

	Choosing the Right Pilot Team Members
	The agile champion
	The agile transition team
	The product owner
	The development team
	The scrum master
	The stakeholders
	The agile mentor

	Creating an Environment That Enables Agility
	Support Agility Initially and Over Time

	Chapter 19 De-Scaling across Teams
	Multi-Team Agile Development
	Making Work Digestible through Vertical Slicing
	Scrum of scrums

	Multi-Team Coordination with LeSS
	LeSS, the smaller framework
	LeSS Huge framework
	Sprint review bazaar
	Observers at the daily scrum
	Component communities and mentors
	Multi-team meetings
	Travelers

	Aligning through Roles with Scrum@Scale
	The scrum master cycle
	The product owner cycle
	Synchronizing in one hour a day

	Joint Program Planning with SAFe
	Joint program increment planning
	Clarity for managers

	Disciplined Agile Toolkit

	Chapter 20 Being a Change Agent
	Becoming Agile Requires Change
	Why Change Doesn’t Happen on Its Own
	Strategic Approaches to Implementing and Managing Change
	Lewin
	ADKAR’s five steps to change
	Kotter’s eight steps for leading change

	Platinum Edge’s Change Roadmap
	Step 1: Conduct an agile audit to define an implementation strategy with success metrics
	Step 2: Build awareness and excitement
	Step 3: Form a transformation team and identify a pilot
	Step 4: Build an environment for success
	Step 5: Train sufficiently and recruit as needed
	Step 6: Kick off the pilot with active coaching
	Step 7: Execute the Roadmap to Value
	Step 8: Gather feedback and improve
	Step 9: Mature and solidify improvements
	Step 10: Progressively expand within the organization

	Leading by Example
	The role of a servant-leader in an agile organization
	Keys for successful servant leadership

	Avoiding Transformation Pitfalls
	Avoiding agile leadership pitfalls

	Signs Your Changes Are Slipping

	Part 6 The Part of Tens
	Chapter 21 Ten Key Benefits of Agile Product Development
	Higher Customer Satisfaction
	Better Product Quality
	Reduced Risk
	Increased Collaboration and Ownership
	More Relevant Metrics
	Improved Performance Visibility
	Increased Investment Control
	Improved Predictability
	Optimized Team Structures
	Higher Team Morale

	Chapter 22 Ten Key Factors for Agile Product Development Success
	Dedicated Team Members
	Collocation
	Done Means Shippable
	Address What Scrum Exposes
	Clear Product Vision and Roadmap
	Product Owner Empowerment
	Developer Versatility
	Scrum Master Clout
	Leadership Support for Learning
	Transition Support

	Chapter 23 Ten Signs That You’re Not Agile
	A Non-Shippable Sprint Product Increment
	Long Release Cycles
	Disengaged Stakeholders
	Lack of Customer Contact
	Lack of Skill Versatility
	Automatable Processes Remain Manual
	Prioritizing Tools over the Work
	High Manager-to-Creator Ratio
	Working around What Scrum Exposes
	Practicing Faux Agile

	Chapter 24 Ten Valuable Resources for Agile Professionals
	Agile Project Management For Dummies Online Cheat Sheet
	Scrum For Dummies
	The Scrum Alliance
	The Agile Alliance
	International Consortium for Agile (ICAgile)
	Mind the Product and ProductTank
	Lean Enterprise Institute
	Extreme Programming
	The Project Management Institute Agile Community
	Platinum Edge

	Index
	EULA

